5 research outputs found

    Toward Ferroelectric Control of Monolayer MoS<sub>2</sub>

    No full text
    The chemical vapor deposition (CVD) of molybdenum disulfide (MoS<sub>2</sub>) single-layer films onto periodically poled lithium niobate is possible while maintaining the substrate polarization pattern. The MoS<sub>2</sub> growth exhibits a preference for the ferroelectric domains polarized “up” with respect to the surface so that the MoS<sub>2</sub> film may be templated by the substrate ferroelectric polarization pattern without the need for further lithography. MoS<sub>2</sub> monolayers preserve the surface polarization of the “up” domains, while slightly quenching the surface polarization on the “down” domains as revealed by piezoresponse force microscopy. Electrical transport measurements suggest changes in the dominant carrier for CVD MoS<sub>2</sub> under application of an external voltage, depending on the domain orientation of the ferroelectric substrate. Such sensitivity to ferroelectric substrate polarization opens the possibility for ferroelectric nonvolatile gating of transition metal dichalcogenides in scalable devices fabricated free of exfoliation and transfer

    Superlinear Composition-Dependent Photocurrent in CVD-Grown Monolayer MoS<sub>2(1–<i>x</i>)</sub>Se<sub>2<i>x</i></sub> Alloy Devices

    No full text
    Transition metal dichalcogenides (TMDs) have emerged as a new class of two-dimensional materials that are promising for electronics and photonics. To date, optoelectronic measurements in these materials have shown the conventional behavior expected from photoconductors such as a linear or sublinear dependence of the photocurrent on light intensity. Here, we report the observation of a new regime of operation where the photocurrent depends superlinearly on light intensity. We use spatially resolved photocurrent measurements on devices consisting of CVD-grown monolayers of TMD alloys spanning MoS<sub>2</sub> to MoSe<sub>2</sub> to show the photoconductive nature of the photoresponse, with the photocurrent dominated by recombination and field-induced carrier separation in the channel. Time-dependent photoconductivity measurements show the presence of persistent photoconductivity for the S-rich alloys, while photocurrent measurements at fixed wavelength for devices of different alloy compositions show a systematic decrease of the responsivity with increasing Se content associated with increased linearity of the current–voltage characteristics. A model based on the presence of different types of recombination centers is presented to explain the origin of the superlinear dependence on light intensity, which emerges when the nonequilibrium occupancy of initially empty fast recombination centers becomes comparable to that of slow recombination centers

    Chemical Vapor Deposition Growth of Few-Layer MoTe<sub>2</sub> in the 2H, 1T′, and 1T Phases: Tunable Properties of MoTe<sub>2</sub> Films

    No full text
    Chemical vapor deposition allows the preparation of few-layer films of MoTe<sub>2</sub> in three distinct structural phases depending on the growth quench temperature: 2H, 1T′, and 1T. We present experimental and computed Raman spectra for each of the phases and utilize transport measurements to explore the properties of the 1T MoTe<sub>2</sub> phase. Density functional theory modeling predicts a (semi-)­metallic character. Our experimental 1T films affirm the former, show facile μA-scale source-drain currents, and increase in conductivity with temperature, different from the 1T′ phase. Variation of the growth method allows the formation of hybrid films of mixed phases that exhibit susceptibility to gating and significantly increased conductivity

    Postgrowth Tuning of the Bandgap of Single-Layer Molybdenum Disulfide Films by Sulfur/Selenium Exchange

    No full text
    We demonstrate bandgap tuning of a single-layer MoS<sub>2</sub> film on SiO<sub>2</sub>/Si <i>via</i> substitution of its sulfur atoms by selenium through a process of gentle sputtering, exposure to a selenium precursor, and annealing. We characterize the substitution process both for S/S and S/Se replacement. Photoluminescence and, in the latter case, X-ray photoelectron spectroscopy provide direct evidence of optical band gap shift and selenium incorporation, respectively. We discuss our experimental observations, including the limit of the achievable bandgap shift, in terms of the role of stress in the film as elucidated by computational studies, based on density functional theory. The resultant films are stable in vacuum, but deteriorate under optical excitation in air

    Gold Dispersion and Activation on the Basal Plane of Single-Layer MoS<sub>2</sub>

    No full text
    Gold islands are typically associated with high binding affinity to adsorbates and catalytic activity. Here we present the growth of dispersed nanoscale gold islands on single layer MoS<sub>2</sub>, prepared on an inert SiO<sub>2</sub>/Si support by chemical vapor deposition. This study offers a combination of growth process development, optical characterization, photoelectron spectroscopy at submicron spatial resolution, and advanced density functional theory modeling for detailed insight into the electronic interaction between gold and single-layer MoS<sub>2</sub>. In particular, we find the gold density of states in Au/MoS<sub>2</sub>/SiO<sub>2</sub>/Si to be far less well-defined than Au islands on other 2-dimensional materials such as graphene, for which we also provide data. We attribute this effect to the presence of heterogeneous Au adatom/MoS<sub>2</sub>-support interactions within the nanometer-scale gold cluster. Theory predicts that CO will exhibit adsorption energies in excess of 1 eV at the Au cluster edges, where the local density of states is dominated by Au 5d<sub><i>z</i></sub>2 symmetry
    corecore