153 research outputs found

    SYSTEMS AND METHODS FOR ACTUATING SOFT ROBOTIC ACTUATORS

    Get PDF
    Systems and methods for providing a soft robot is provided. In one system , a robotic device includes a flexible body having a fluid chamber, where a portion of the flexible body includes an elastically extensible material and a portion of the flexible body is strain limiting relative to the elastically extensible material. The robotic device can further include a pressurizing inlet in fluid communication with the fluid chamber, and a pressurizing device in fluid communication with the pressurizing inlet, the pressurizing device including a reaction chamber configured to accommodate a gas producing chemical reaction for providing pressurized gas to the pressurizing inlet

    Large-Scale Synthesis of Colloidal Si Nanocrystals and Their Helium Plasma Processing into Spin-On, Carbon-Free Nanocrystalline Si Films

    Get PDF
    This paper describes a simple approach to the large-scale synthesis of colloidal Si nanocrystals and their processing into spin-on carbon-free nanocrystalline Si films. The synthesized silicon nanoparticles are capped with decene, dispersed in hexane, and deposited on silicon substrates. The deposited films are exposed to nonoxidizing room-temperature He plasma to remove the organic ligands without adversely affecting the silicon nanoparticles to form crack-free thin films. We further show that the reactive ion etching rate in these films is 1.87 times faster than that for single-crystalline Si, consistent with a simple geometric argument that accounts for the nanoscale roughness caused by the nanoparticle shape

    On the kinetics of the removal of ligands from films of colloidal nanocrystals by plasmas

    Get PDF
    This paper describes the kinetic limitations of etching ligands from colloidal nanocrystal assemblies (CNAs) by plasma processing. We measured the etching kinetics of ligands from a CNA model system (spherical ZrO2 nanocrystals, 2.5–3.5 nm diameter, capped with trioctylphosphine oxide) with inductively coupled plasmas (He and O2 feed gases, powers ranging from 7 to 30 W, at pressures ranging from 100 to 2000 mTorr and exposure times ranging between 6 and 168 h). The etching rate slows down by about one order of magnitude in the first minutes of etching, after which the rate of carbon removal becomes proportional to the third power of the carbon concentration in the CNA. Pressure oscillations in the plasma chamber significantly accelerate the overall rate of etching. These results indicate that the rate of etching is mostly affected by two main factors: (i) the crosslinking of the ligands in the first stage of plasma exposure, and (ii) the formation of a boundary layer at the surface of the CNA. Optimized conditions of plasma processing allow for a 60-fold improvement in etching rates compared to the previous state of the art and make the timeframes of plasma processing comparable to those of calcination
    • 

    corecore