108 research outputs found
Cardiac and vascular effects of diltiazem, dobutamine and amrinone, drugs used after myocardial revascularization
Regulation of peripheral blood flow in Complex Regional Pain Syndrome: clinical implication for symptomatic relief and pain management
Background. During the chronic stage of Complex Regional Pain Syndrome (CRPS), impaired microcirculation is related to increased vasoconstriction, tissue hypoxia, and metabolic tissue acidosis in the affected limb. Several mechanisms may be responsible for the ischemia and pain in chronic cold CPRS. Discussion. The diminished blood flow may be caused by either sympathetic dysfunction, hypersensitivity to circulating catecholamines, or endothelial dysfunction. The pain may be of neuropathic, inflammatory, nociceptive, or functional nature, or of mixed origin. Summary. The origin of the pain should be the basis of the symptomatic therapy. Since the difference in temperature between both hands fluctuates over time in cold CRPS, when in doubt, the clinician should prioritize the patient's report of a persistent cold extremity over clinical tests that show no difference. Future research should focus on developing easily applied methods for clinical use to differentiate between central and peripheral blood flow regulation disorders in individual patients
Noninvasive Assessment of Preclinical Atherosclerosis
Initially considered as a semipermeable barrier separating lumen from vessel wall, the endothelium is now recognised as a complex endocrine organ responsible for a variety of physiological processes vital for vascular homeostasis. These include the regulation of vascular tone, luminal diameter, and blood flow; hemostasis and thrombolysis; platelet and leucocyte vessel-wall interactions; the regulation of vascular permeability; and tissue growth and remodelling. The endothelium modulates arterial stiffness, which precedes overt atherosclerosis and is an independent predictor of cardiovascular events. Unsurprisingly, dysfunction of the endothelium may be considered as an early and potentially reversible step in the process of atherogenesis and numerous methods have been developed to assess endothelial status and large artery stiffness. Methodology includes flow-mediated dilatation of the brachial artery, assessment of coronary flow reserve, carotid intimamedia thickness, pulse wave analysis, pulse wave velocity, and plethysmography. This review outlines the various modalities, indications, and limitations of available methods to assess arterial dysfunction and vascular risk
Effect of ACE inhibitors on endothelial dysfunction: Unanswered questions and implications for further investigation and therapy
Experimental studies have suggested that angiotensin-converting enzyme (ACE) inhibitors may have an important role in blocking the progression of and/or reversing endothelial dysfunction. The extrapolation of these experimental studies to the clinical situation has, however, been disappointing. Studies of forearm-mediated endothelial vasodilatation in patients with hypertension with captopril, enalapril, and cilazapril have been negative. The finding of the Trial in Reversing Endothelial Dysfunction (TREND) that the administration of quinapril to normotensive patients with coronary artery disease in part restores endothelial-mediated coronary vasodilation, as assessed by intracoronary administration of acetylcholine, has important implications for future therapy and raises several important questions. The differences in the TREND and previous studies of ACE inhibitors on endothelial dysfunction may be due to mechanistic differences in endothelial dysfunction in patients with coronary artery disease and hypertension. Although in general there has been a good correlation between endothelial dysfunction as assessed by forearm flow and coronary endothelial dysfunction as assessed by acetylcholine, these vascular beds may be affected differently by therapeutic interventions, especially with an ACE inhibitor, which may affect sheart stress and angiotensin II formation in different vascular beds differently. Third, one needs to question whether the effect of quinapril on coronary endothelial dysfunction is a class effect or unique to quinapril. It will be necessary to test the effectiveness of other ACE inhibitors on coronary endothelial dysfunction in humans before concluding that the beneficial effects of quinapril are due to a class effect.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44542/1/10557_2004_Article_BF00051113.pd
Noninvasive assessment of endothelial function and ST segment changes during exercise testing in coronary artery disease
Effect of tamoxifen on the coronary vascular reactivity of spontaneously hypertensive female rats
Endothelial dysfunction in cardiovascular disease and Flammer syndrome—similarities and differences
Evaluation of Peripheral Vascular Endothelial Function with a Portable Ultrasound Device
Circadian variation of transient myocardial ischemia in patients with coronary artery disease.
The changes in placental IL-10 level, placental IFN-γ level, and placental VCAM-1 expression in endothelial dysfunction model using Mus musculus
- …
