1,849 research outputs found

    S. H. Ludlow to Mr. and Mrs. Aldrich, 18 December 1872

    Get PDF
    https://egrove.olemiss.edu/aldrichcorr_e/1034/thumbnail.jp

    Quantum engineering of atomic phase-shifts in optical clocks

    Full text link
    Quantum engineering of time-separated Raman laser pulses in three-level systems is presented to produce an ultra-narrow optical transition in bosonic alkali-earth clocks free from light shifts and with a significantly reduced sensitivity to laser parameter fluctuations. Based on a quantum artificial complex-wave-function analytical model, and supported by a full density matrix simulation including a possible residual effect of spontaneous emission from the intermediate state, atomic phase-shifts associated to Ramsey and Hyper-Ramsey two-photon spectroscopy in optical clocks are derived. Various common-mode Raman frequency detunings are found where the frequency shifts from off-resonant states are canceled, while strongly reducing their uncertainties at the 10−18^{-18} level of accuracy.Comment: accepted for publication in PR

    Fluorescence measurements of expanding strongly-coupled neutral plasmas

    Full text link
    We report new detailed density profile measurements in expanding strongly-coupled neutral plasmas. Using laser-induced fluorescence techniques, we determine plasma densities in the range of 10^5 to 10^9/cm^3 with a time resolution limit as small as 7 ns. Strong-coupling in the plasma ions is inferred directly from the fluorescence signals. Evidence for strong-coupling at late times is presented, confirming a recent theoretical result.Comment: submitted to PR

    Narrow Line Photoassociation in an Optical Lattice

    Full text link
    With ultracold 88^{88}Sr in a 1D magic wavelength optical lattice, we performed narrow line photoassociation spectroscopy near the 1^1S0−3_0 - ^3P1_1 intercombination transition. Nine least-bound vibrational molecular levels associated with the long-range 0u0_u and 1u1_u potential energy surfaces were measured and identified. A simple theoretical model accurately describes the level positions and treats the effects of the lattice confinement on the line shapes. The measured resonance strengths show that optical tuning of the ground state scattering length should be possible without significant atom loss.Comment: 4 pages, 4 figure

    Two-photon absorption in potassium niobate

    Full text link
    We report measurements of thermal self-locking of a Fabry-Perot cavity containing a potassium niobate (KNbO3) crystal. We develop a method to determine linear and nonlinear optical absorption coefficients in intracavity crystals by detailed analysis of the transmission lineshapes. These lineshapes are typical of optical bistability in thermally loaded cavities. For our crystal, we determine the one-photon absorption coefficient at 846 nm to be (0.0034 \pm 0.0022) per m and the two-photon absorption coefficient at 846 nm to be (3.2 \pm 0.5) \times 10^{-11} m/W and the one-photon absorption coefficient at 423 nm to be (13 \pm 2) per m. We also address the issue of blue-light-induced-infrared-absorption (BLIIRA), and determine a coefficient for this excited state absorption process. Our method is particularly well suited to bulk absorption measurements where absorption is small compared to scattering. We also report new measurements of the temperature dependence of the index of refraction at 846 nm, and compare to values in the literature.Comment: 8 pages. To appear in J. Opt. Soc. Am.

    Making optical atomic clocks more stable with 10−1610^{-16} level laser stabilization

    Full text link
    The superb precision of an atomic clock is derived from its stability. Atomic clocks based on optical (rather than microwave) frequencies are attractive because of their potential for high stability, which scales with operational frequency. Nevertheless, optical clocks have not yet realized this vast potential, due in large part to limitations of the laser used to excite the atomic resonance. To address this problem, we demonstrate a cavity-stabilized laser system with a reduced thermal noise floor, exhibiting a fractional frequency instability of 2×10−162 \times 10^{-16}. We use this laser as a stable optical source in a Yb optical lattice clock to resolve an ultranarrow 1 Hz transition linewidth. With the stable laser source and the signal to noise ratio (S/N) afforded by the Yb optical clock, we dramatically reduce key stability limitations of the clock, and make measurements consistent with a clock instability of 5×10−16/τ5 \times 10^{-16} / \sqrt{\tau}
    • …
    corecore