705 research outputs found

    Space shuttle navigation analysis

    Get PDF
    A detailed analysis of space shuttle navigation for each of the major mission phases is presented. A covariance analysis program for prelaunch IMU calibration and alignment for the orbital flight tests (OFT) is described, and a partial error budget is presented. The ascent, orbital operations and deorbit maneuver study considered GPS-aided inertial navigation in the Phase III GPS (1984+) time frame. The entry and landing study evaluated navigation performance for the OFT baseline system. Detailed error budgets and sensitivity analyses are provided for both the ascent and entry studies

    Space shuttle navigation analysis. Volume 2: Baseline system navigation

    Get PDF
    Studies related to the baseline navigation system for the orbiter are presented. The baseline navigation system studies include a covariance analysis of the Inertial Measurement Unit calibration and alignment procedures, postflight IMU error recovery for the approach and landing phases, on-orbit calibration of IMU instrument biases, and a covariance analysis of entry and prelaunch navigation system performance

    Towards spatiotemporal integration of bus transit with data-driven approaches

    Full text link
    This study aims to propose an approach for spatiotemporal integration of bus transit, which enables users to change bus lines by paying a single fare. This could increase bus transit efficiency and, consequently, help to make this mode of transportation more attractive. Usually, this strategy is allowed for a few hours in a non-restricted area; thus, certain walking distance areas behave like "virtual terminals." For that, two data-driven algorithms are proposed in this work. First, a new algorithm for detecting itineraries based on bus GPS data and the bus stop location. The proposed algorithm's results show that 90% of the database detected valid itineraries by excluding invalid markings and adding times at missing bus stops through temporal interpolation. Second, this study proposes a bus stop clustering algorithm to define suitable areas for these virtual terminals where it would be possible to make bus transfers outside the physical terminals. Using real-world origin-destination trips, the bus network, including clusters, can reduce traveled distances by up to 50%, making twice as many connections on average.Comment: 20 pages, 16 FIGURE

    T and CPT Symmetries in Entangled Neutral Meson Systems

    Get PDF
    Genuine tests of an asymmetry under T and/or CPT transformations imply the interchange between in-states and out-states. I explain a methodology to perform model-indepedent separate measurements of the three CP, T and CPT symmetry violations for transitions involving the decay of the neutral meson systems in B- and {\Phi}-factories. It makes use of the quantum-mechanical entanglement only, for which the individual state of each neutral meson is not defined before the decay of its orthogonal partner. The final proof of the independence of the three asymmetries is that no other theoretical ingredient is involved and that the event sample corresponding to each case is different from the other two. The experimental analysis for the measurements of these three asymmetries as function of the time interval {\Delta}t > 0 between the first and second decays is discussed, as well as the significance of the expected results. In particular, one may advance a first observation of true, direct, evidence of Time-Reserval-Violation in B-factories by many standard deviations from zero, without any reference to, and independent of, CP-Violation. In some quantum gravity framework the CPT-transformation is ill-defined, so there is a resulting loss of particle-antiparticle identity. This mechanism induces a breaking of the EPR correlation in the entanglement imposed by Bose statistics to the neutral meson system, the so-called {\omega}-effect. I present results and prospects for the {\omega}-parameter in the correlated neutral meson-antimeson states.Comment: Proc. DISCRETE 2010, Symposium on Prospects in the Physics of Discrete Symmetries, December 2010, Rom

    Quantum Fields on the Groenewold-Moyal Plane

    Full text link
    We give an introductory review of quantum physics on the noncommutative spacetime called the Groenewold-Moyal plane. Basic ideas like star products, twisted statistics, second quantized fields and discrete symmetries are discussed. We also outline some of the recent developments in these fields and mention where one can search for experimental signals.Comment: 50 pages, 3 figures. v2: published versio

    Cytosolic chaperones influence the fate of a toxin dislocated from the endoplasmic reticulum

    Get PDF
    The plant cytotoxin ricin enters target mammalian cells by receptor-mediated endocytosis and undergoes retrograde transport to the endoplasmic reticulum (ER). Here, its catalytic A chain (RTA) is reductively separated from the cell-binding B chain, and free RTA enters the cytosol where it inactivates ribosomes. Cytosolic entry requires unfolding of RTA and dislocation across the ER membrane such that it arrives in the cytosol in a vulnerable, nonnative conformation. Clearly, for such a dislocated toxin to become active, it must avoid degradation and fold to a catalytic conformation. Here, we show that, in vitro, Hsc70 prevents aggregation of heat-treated RTA, and that RTA catalytic activity is recovered after chaperone treatment. A combination of pharmacological inhibition and cochaperone expression reveals that, in vivo, cytosolic RTA is scrutinized sequentially by the Hsc70 and Hsp90 cytosolic chaperone machineries, and that its eventual fate is determined by the balance of activities of cochaperones that regulate Hsc70 and Hsp90 functions. Cytotoxic activity follows Hsc70-mediated escape of RTA from an otherwise destructive pathway facilitated by Hsp90. We demonstrate a role for cytosolic chaperones, proteins typically associated with folding nascent proteins, assembling multimolecular protein complexes and degrading cytosolic and stalled, cotranslocational clients, in a toxin triage, in which both toxin folding and degradation are initiated from chaperone-bound states

    Normal tau polarisation as a sensitive probe of CP violation in chargino decay

    Full text link
    CP violation in the spin-spin correlations in chargino production and subsequent two-body decay into a tau and a tau-sneutrino is studied at the ILC. From the normal polarisation of the tau, an asymmetry is defined to test the CP-violating phase of the higgsino mass parameter \mu. Asymmetries of more than \pm70% are obtained, also in scenarios with heavy first and second generation sfermions. Bounds on the statistical significances of the CP asymmetries are estimated. As a result, the normal tau polarisation in the chargino decay is one of the most sensitive probes to constrain or measure the phase \phi_\mu at the ILC, motivating further detailed experimental studies.Comment: 20 pages, 10 figures, gzipped tar fil

    Cytosolic chaperones influence the fate of a toxin dislocated from the endoplasmic reticulum

    Get PDF
    The plant cytotoxin ricin enters target mammalian cells by receptor-mediated endocytosis and undergoes retrograde transport to the endoplasmic reticulum (ER). Here, its catalytic A chain (RTA) is reductively separated from the cell-binding B chain, and free RTA enters the cytosol where it inactivates ribosomes. Cytosolic entry requires unfolding of RTA and dislocation across the ER membrane such that it arrives in the cytosol in a vulnerable, nonnative conformation. Clearly, for such a dislocated toxin to become active, it must avoid degradation and fold to a catalytic conformation. Here, we show that, in vitro, Hsc70 prevents aggregation of heat-treated RTA, and that RTA catalytic activity is recovered after chaperone treatment. A combination of pharmacological inhibition and cochaperone expression reveals that, in vivo, cytosolic RTA is scrutinized sequentially by the Hsc70 and Hsp90 cytosolic chaperone machineries, and that its eventual fate is determined by the balance of activities of cochaperones that regulate Hsc70 and Hsp90 functions. Cytotoxic activity follows Hsc70-mediated escape of RTA from an otherwise destructive pathway facilitated by Hsp90. We demonstrate a role for cytosolic chaperones, proteins typically associated with folding nascent proteins, assembling multimolecular protein complexes and degrading cytosolic and stalled, cotranslocational clients, in a toxin triage, in which both toxin folding and degradation are initiated from chaperone-bound states

    Sampling-based Algorithms for Optimal Motion Planning

    Get PDF
    During the last decade, sampling-based path planning algorithms, such as Probabilistic RoadMaps (PRM) and Rapidly-exploring Random Trees (RRT), have been shown to work well in practice and possess theoretical guarantees such as probabilistic completeness. However, little effort has been devoted to the formal analysis of the quality of the solution returned by such algorithms, e.g., as a function of the number of samples. The purpose of this paper is to fill this gap, by rigorously analyzing the asymptotic behavior of the cost of the solution returned by stochastic sampling-based algorithms as the number of samples increases. A number of negative results are provided, characterizing existing algorithms, e.g., showing that, under mild technical conditions, the cost of the solution returned by broadly used sampling-based algorithms converges almost surely to a non-optimal value. The main contribution of the paper is the introduction of new algorithms, namely, PRM* and RRT*, which are provably asymptotically optimal, i.e., such that the cost of the returned solution converges almost surely to the optimum. Moreover, it is shown that the computational complexity of the new algorithms is within a constant factor of that of their probabilistically complete (but not asymptotically optimal) counterparts. The analysis in this paper hinges on novel connections between stochastic sampling-based path planning algorithms and the theory of random geometric graphs.Comment: 76 pages, 26 figures, to appear in International Journal of Robotics Researc
    corecore