7 research outputs found

    A biophysical model of dynamic balancing of excitation and inhibition in fast oscillatory large-scale networks

    Get PDF
    Over long timescales, neuronal dynamics can be robust to quite large perturbations, such as changes in white matter connectivity and grey matter structure through processes including learning, aging, development and certain disease processes. One possible explanation is that robust dynamics are facilitated by homeostatic mechanisms that can dynamically rebalance brain networks. In this study, we simulate a cortical brain network using the Wilson-Cowan neural mass model with conduction delays and noise, and use inhibitory synaptic plasticity (ISP) to dynamically achieve a spatially local balance between excitation and inhibition. Using MEG data from 55 subjects we find that ISP enables us to simultaneously achieve high correlation with multiple measures of functional connectivity, including amplitude envelope correlation and phase locking. Further, we find that ISP successfully achieves local E/I balance, and can consistently predict the functional connectivity computed from real MEG data, for a much wider range of model parameters than is possible with a model without ISP

    Studying dynamic neural interactions with MEG

    No full text
    Interactions between functionally specialized brain regions are crucial for normal brain function. Magnetoencephalography (MEG) is suited to capture these interactions because it provides whole head measurements of brain activity with temporal resolution in the millisecond range. Many different measures of connectivity exist and in order to take the connectivity analysis results at face value one should be aware of the strengths and weaknesses of these measures. Next to this, an important challenge in MEG connectivity analysis lies in the fact that more than one sensor picks up the activity of any underlying source. This field spread severely limits the utility of connectivity measures computed directly between sensor recordings. As a consequence, neuronal interactions should be ideally studied on the level of the reconstructed sources. MEG is well suited for this purpose, since its signal properties and high spatial sampling allows for relatively accurate unmixing of the sensor recordings. This chapter provides some necessary background on connectivity analysis in general, and proceeds by describing the challenges that are associated with the analysis of MEG-based connectivity at the sensor level. Source level approaches are described and some recent advances with respect to MEG-based connectivity during the resting state and graph theoretic approaches are described
    corecore