43 research outputs found
Solute carrier 41A3 encodes for a mitochondrial Mg2+ efflux system
The important role of magnesium (Mg(2+)) in normal cellular physiology
requires flexible, yet tightly regulated, intracellular Mg(2+) homeostasis
(IMH). However, only little is known about Mg(2+) transporters of subcellular
compartments such as mitochondria, despite their obvious importance for the
deposition and reposition of intracellular Mg(2+) pools. In particular,
knowledge about mechanisms responsible for extrusion of Mg(2+) from
mitochondria is lacking. Based on circumstantial evidence, two possible
mechanisms of Mg(2+) release from mitochondria were predicted: (1) Mg(2+)
efflux coupled to ATP translocation via the ATP-Mg/Pi carrier, and (2) Mg(2+)
efflux via a H(+)/Mg(2+) exchanger. Regardless, the identity of the
H(+)-coupled Mg(2+) efflux system is unknown. We demonstrate here that member
A3 of solute carrier (SLC) family 41 is a mitochondrial Mg(2+) efflux system.
Mitochondria of HEK293 cells overexpressing SLC41A3 exhibit a 60% increase in
the extrusion of Mg(2+) compared with control cells. This efflux mechanism is
Na(+)-dependent and temperature sensitive. Our data identify SLC41A3 as the
first mammalian mitochondrial Mg(2+) efflux system, which greatly enhances our
understanding of intracellular Mg(2+) homeostasis
Overexpression of Na+/Mg2+ exchanger SLC41A1 attenuates pro-survival signaling
The Na+/Mg2+ exchanger SLC41A1 (A1), a key component of intracellular Mg homeostasis (IMH), is the major cellular Mg2+ efflux system, and its overexpression decreases [Mg2+]intracellular. IMH plays an important role in the regulation of many cellular processes, including cellular signaling. However, whether the overexpression of A1 and the consequent drop of [Mg2+]i impact on intracellular signaling is unknown.
To examine the latter, we utilized dynamic mass redistribution (DMR) assay, PathScan® RTK signaling antibody (PRSA) array, confirmatory Western blot (WB) analyses of phosphorylation of kinases selected by PRSA, and mag-fura 2-assisted fast filter spectrometry (FFS).
We demonstrate here that the overexpression of A1 quantitatively and qualitatively changes the DMR signal evoked by the application of PAR-1-selective activating peptide and/or by changing [Mg2+]extracellular in HEK293 cells. PRSA profiling of the phosphorylation of important signaling nodes followed by confirmatory WB has revealed that, in HEK293 cells, A1 overexpression significantly attenuates the phosphorylation of Akt/PKB on Thr308 and/or Ser473 and of Erk1/2 on Thr202/Tyr204 in the presence of 0 or 1 mM (physiological) Mg2+ in the bath solution. The latter is also true for SH-SY5Y and HeLa cells. Overexpression of A1 in HEK293 cells significantly lowers [Mg2+]i in the presence of [Mg2+]e = 0 or 1 mM. This correlates with the observed attenuation of prosurvival Akt/PKB – Erk1/2 signaling in these cells.
Thus, A1 expression status and [Mg2+]e (and consequently also [Mg2+]i) modulate the complex physiological fingerprint of the cell and influence the activity of kinases involved in anti-apoptotic and, hence, pro-survival events in cells
Dietary methionine source alters the lipidome in the small intestinal epithelium of pigs
Methionine (Met) as an essential amino acid has key importance in a variety of metabolic pathways. This study investigated the influence of three dietary Met supplements (0.21% L-Met, 0.21% DL-Met and 0.31% DL-2-hydroxy-4-(methylthio)butanoic acid (DL-HMTBA)) on the metabolome and inflammatory status in the small intestine of pigs. Epithelia from duodenum, proximal jejunum, middle jejunum and ileum were subjected to metabolomics analysis and qRT-PCR of caspase 1, NLR family pyrin domain containing 3 (NLRP3), interleukins IL1β, IL8, IL18, and transforming growth factor TGFβ. Principal component analysis of the intraepithelial metabolome revealed strong clustering of samples by intestinal segment but not by dietary treatment. However, pathway enrichment analysis revealed that after L-Met supplementation polyunsaturated fatty acids (PUFA) and tocopherol metabolites were lower across small intestinal segments, whereas monohydroxy fatty acids were increased in distal small intestine. Pigs supplemented with DL-HMTBA showed a pronounced shift of secondary bile acids (BA) and sphingosine metabolites from middle jejunum to ileum. In the amino acid super pathway, only histidine metabolism tended to be altered in DL-Met-supplemented pigs. Diet did not affect the expression of inflammation-related genes. These findings suggest that dietary supplementation of young pigs with different Met sources selectively alters lipid metabolism without consequences for inflammatory status
Transport of Neutral Amino Acids in the Jejunum of Pigs with Special Consideration of L-Methionine
Methionine (Met) is a popular nutritional supplement in humans and animals. It is routinely supplemented to pigs as L-Met, DL-Met, or DL-2-hydroxy-4-(methylthio) butanoic acid (DL-HMTBA). Methods: We investigated the effect of these Met supplements on jejunal amino acid (AA) transport in male castrated Piétrain × Danbred pigs, also including a non-supplemented group. The mucosal-to-serosal flux of ten [14C]-labeled AAs (L-glutamine, glycine, L-leucine, L-lysine, L-Met, L-serine, L-threonine, L-tryptophan, L-tyrosine and L-valine) was investigated at two concentrations (50 µM and 5 mM). Inhibition of apical uptake by mucosal L-Met was also measured for these AAs. The intestinal expression of apical AA transporters, angiotensin-converting enzyme II and inflammation-related genes were compared with those of a previous study. Results: Except for tryptophan and lysine at 5 mM, all AA fluxes were Na+-dependent (p ≤ 0.05), and the uptake of most AAs, except glycine and lysine, was inhibited by L-Met (p < 0.001). A correlation network existed between Na+-dependent fluxes of most AAs (except tryptophan and partly glycine). We observed the upregulation of B0AT1 (SLC6A19) (p < 0.001), the downregulation of ATB0,+ (SLC6A14) (p < 0.001) and a lower expression of CASP1, IL1β, IL8, TGFβ and TNFα in the present vs. the previous study (p < 0.001). Conclusions: The correlating AAs likely share the same Na+-dependent transporter(s). A varying effect of the Met supplement type on AA transport in the two studies might be related to a different level of supplementation or a different inflammatory status of the small intestine
Rhodolith Beds Heterogeneity along the Apulian Continental Shelf (Mediterranean Sea)
Rhodolith beds represent a key habitat worldwide, from tropical to polar ecosystems. Despite this habitat is considered a hotspot of biodiversity, providing a suite of ecosystem goods and services, still scarce quantitative information is available thus far about rhodolith beds occurrence and ecological role, especially in the Mediterranean Sea. This study reports the composition and patterns of distribution of rhodolith assemblages found in four study areas along ca. 860 km of coast in the Central Mediterranean Sea. These rhodolith beds were studied for the first time and significant differences at all spatial scales have been highlighted, documenting the high variability of this habitat. Rhodolith species composition, morphology and distribution have been discussed considering the potential role of environmental factors in driving these patterns. The need for improving their protection is discussed to complement present conservation and management initiatives, particularly in the frame of the EU Marine Strategy Framework Directive
Mitochondrial respiration is decreased in visceral but not subcutaneous adipose tissue in obese individuals with fatty liver disease
Adipose tissue (commonly called body fat) can be found under the
skin (subcutaneous) or around internal organs (visceral). Dysfunction of adipose tissue can cause insulin resistance and lead to excess delivery of fat to other organs such as the liver. Herein, we show that dysfunction specifically in visceral adipose tissue was associated with fatty liver disease
SLC41A1, SLC41A3 und CNNM2: Magnesium-responsive Genes mit potentieller Beteiligung an humanen Krankheiten
It is well known that magnesium deficiency or altered IMH can trigger many
pathophysiological conditions, thus a correct functioning of Mg2+ transporters
and channels is essential for normal cellular physiology. Mutations in many
MRG induce hypomagnesemia which often represents one of the complications of
many human ailments. Based on previous data which have characterized SLC41A1
as a plasma membrane Na+/Mg2+ exchanger (4, 5) and as being overexpressed in
preeclamptic women (6), the present thesis aimed at a further characterization
of SLC41A1 and Mg2+ efflux in some pathophysiological conditions. It further
aimed at the molecular characterization of two others MRGs, CNNM2 and SLC41A3,
in order to achieve a better understanding of Mg2+ homeostasis and to link the
mechanisms of Mg2+ mobilization across the plasma membrane or between
intracellular compartments with mitochondrial dysfunction and disease states
(e.g.: Parkinson’s disease (PD), diabetes, etc). Proceeding from previous
results of Kolisek et al (4, 5), describing SLC41A1 as the major Mg2+ efflux
system of the cell, the first study examined the complex-forming ability of
SLC41A1 in vivo and identified EBP and other members of the SLC superfamily as
potential binding partners. Further experiments evaluated the transport
activity of the PD-associated SLC41A1 variant pA350V and defined it as a
“gain-of-function” mutation enhancing Mg2+ efflux compared with the wild-type
protein. A next question was whether SLC41A1 transport activity could be
influenced and regulated by insulin in order to explain the molecular basis of
hypomagnesaemia often observed in diabetes patients. The present study shows
that insulin reduces the SLC41A1-mediated Mg2+ efflux and, most importantly,
it seems to have an effect on intracellular Mg2+ stores, since an earlier
onset of Mg2+ release from intracellular stores was observed. In the second
part of this thesis, experiments were conducted on stably transfected HEK293
cells overexpressing SLC41A3 in order to uncover the function of SLC41A3 with
regard to its ability to transport Mg2+, its mode of Mg2+ transport and its
role in cellular Mg2+ homeostasis. To assess the role of SLC41A3 for cellular
Mg2+ homeostasis and gain insight into the regulation of transport activity
and/or membrane insertion, knowledge about the precise cellular localization
and the identification of the binding partners are essential. The present data
reveal a specific mitochondrial localization for SLC41A3 and its function as
mitochondrial Mg2+ efflux system. They further suggest that the effect of
insulin on intracellular Mg2+ stores is most likely mediated via SLC41A3.
Given that mitochondria serve as intracellular Mg2+ stores, a mitochondrial
dysfunction might affect cellular Mg2+ homeostasis and this could be one
reason for intracellular Mg2+ deficiency observed in diseases such as
diabetes, PD and hypertension. The last part of the project focused on the
physiological characterization of two isoforms of another Mg2+ responsive
gene, CNNM2, because a mutation in this gene has been recently associated with
severe familial hypomagnesaemia. A previous study showed that CNNM2 is
overexpressed in diabetic patients (114) but its expression does not correlate
with Mg2+ plasma levels. However, the present study shows an overexpression of
CNNM2 in Jurkat and JVM-13 cells after Mg2+ starvation. The protein has an
extensive localization in the cells, including the mitochondrial membrane, and
its putative interactors include proteins involved in the regulation of
mitochondrial homeostasis (mitophagy, clearance of ROS). A further question
was whether the two isoforms (I1 and I2) of CNNM2 are able to transport Mg2+,
but the data presented herein clearly indicate that CNNM2 transports Mg2+
neither in electrogenic nor in electroneutral mode in transgenic HEK293 cells
overexpressing I1 or I2. This strongly suggests that CNNM2 might represent the
first magnesium homeostatic factor without being a Mg2+ transporter per se.
Instead CNNM2 can be postulated to sense the changes in extracellular and/or
intracellular Mg2+ concentration and consequently activates other proteins
responsible for Mg2+ mobilization in the cell. From these data a role of CNNM2
in intracellular Mg2+ homeostasis can be assessed and it can be speculated
that the two SLC41 proteins act cooperatively with CNNM2-mediated Mg2+ sensing
in controlling the cellular magnesium homeostasis.Es ist allgemein anerkannt, dass ein Magnesiummangel oder eine veränderte
intrazelluläre Mg2+-Homöostase (IMH) viele pathophysiologische Zustände
auslösen kann. Daher ist die einwandfreie Funktion von Mg2+-Transportern und
Mg2+-Kanälen für physiologische Zellfunktionen essenziell. Mutationen in
Mg2+-regulierten Genen (MRG) können eine Hypomagnesiämie induzieren, die bei
vielen Erkrankungen zu Komplikationen fĂĽhren kann. Basierend auf frĂĽheren
Daten, die SLC41A1 als einen Na+/Mg2+-Austauscher in der Plasmamembran
charakterisiert haben und als Gen, das bei Frauen mit Präeklampsie
ĂĽberexprimiert ist, war das Ziel dieser Arbeit eine weitere Charakterisierung
von SLC41A1 und des durch dieses Protein vermittelten Mg2+-Effluxes unter
pathophysiologischen Zuständen. Ein weiteres Ziel dieser Arbeit war die
funktionelle Charakterisierung der MRGs CNNM2 und SLC41A3 im Hinblick auf ihre
Bedeutung für die intrazelluläre Mg2+-Homöostase. Insbesondere sollten
mögliche Beziehungen zwischen den Mechanismen des Mg2+-Transportes über die
Plasmamembran bzw. zwischen intrazellulären Kompartimenten mit mitochondrialer
Dysfunktion und bestimmten Krankheitszuständen (z.B.: Morbus Parkinson,
Diabetes, etc.) aufgedeckt werden. Ausgehend von frĂĽheren Ergebnissen von
Kolisek et al., die SLC41A1 als den Hauptmechanismus fĂĽr den Mg2+-Efflux aus
der Zelle beschrieben hatten, untersuchte der erste Teil der Studie die
Fähigkeit von SLC41A1 Proteinkomplexe zu bilden. Emopamil binding protein
(EBP) und andere Vertreter der SLC Superfamilie wurden als potentielle
Bindungspartner identifiziert. In weiteren Experimenten wurde die
Transportaktivität der mit Morbus Parkinson assoziierten SLC41A1 Variante
pA350V evaluiert und gezeigt, dass es sich um eine „gain-offunction“ Mutation
handelt, die im Vergleich zum Wildtyp-Protein einen erhöhten Mg2+-Efflux aus
der Zelle bedingt. AnschlieĂźend wurde die Fragestellung untersucht, ob die
Transportaktivität von SLC41A1 durch Insulin beeinflusst werden kann, da bei
Diabetes-Patienten oft eine Hypomagnesiämie beobachtet wird. Die vorliegenden
Ergebnisse zeigen, dass Insulin den SLC41A1-vermittelten Mg2+-Efflux reduziert
und offensichtlich einen Effekt auf intrazelluläre Mg2+-Speicher hat, da ein
früheres Einsetzen der Mg2+-Freisetzung aus intrazellulären Speichern
beobachtet wurde. Im zweiten Teil der Arbeit wurde eine stabil transfizierte,
SLC41A3-überexprimierende HEK293 Zelllinie verwendet, um die Fähigkeit dieses
Proteins, Mg2+ zu transportieren, näher zu untersuchen und seine Rolle in der
zelluläre Mg2+-Homöostase zu charakterisieren. Um die Regulation der
Transportaktivität und die Rolle von SLC41A3 in der zelluläre Mg2+-Homöostase
zu verstehen, war es notwendig die zelluläre Lokalisation und etwaige
Bindungspartner zu identifizieren. Die vorliegenden Daten zeigen eine
spezifische Lokalisation in den Mitochondrien und eine Funktion als
mitochondriales Mg2+-Efflux System. Diese Ergebnisse legen nahe, dass der
beobachtete Effekt von Insulin auf intrazelluläre Mg2+-Speicher wahrscheinlich
durch SLC41A3 vermittelt wird. Vorausgesetzt, dass Mitochondrien als
intrazelluläre Mg2+-Speicher fungieren, kann eine mitochondriale Dysfunktion
auch die zelluläre Mg2+-Homöostase beeinflussen und ein Grund für die bei
Krankheiten wie Diabetes, Morbus Parkinson oder Bluthochdruck beobachtete
intrazelluläre Mg2+-Defizienz sein. Der letzte Teil der Arbeit konzentrierte
sich auf die physiologische Charakterisierung zweier Isoformen des
Mg2+-regulierten Gens CNNM2 (I1 und I2). Mutationen in diesem Gen sind mit
schwerer, familiärer Hypomagnesiämie assoziiert. Eine vorangegangene Studie
hatte gezeigt, dass CNNM2 in Diabetes-Patienten ĂĽberexprimiert war, die
Expression aber nicht mit den Mg2+- Spiegel im Plasma korrelierte. In der
vorliegenden Arbeit konnte aber eine Ăśberexpression von CNNM2 in Jurkat und
JVM-13 Zellen nach Mg2+-Depletion gezeigt werden. Das Protein war in der Zelle
weit verbreitet, auch in Mitochondrien, und seine potentiellen
Interaktionspartner umfassen Proteine, die an der Regulation der
Mitochondrien-Homöostase (Mitophagie, Beseitigung reaktiver Sauerstoffspezies)
beteiligt sind. Es wurde auch untersucht, ob die beiden CNNM2-Isoformen in der
Lage sind, Mg2+ zu transportieren. Die hier präsentierten Daten zeigen
eindeutig, dass in HEK293 Zellen, die CNNM2 ĂĽberexprimieren, das Protein weder
in elektrogener noch in elektroneutraler Weise Mg2+ transportiert. Diese
Ergebnisse legen nahe, dass CNNM2 der erste Mg2+-homöostatische Faktor ist,
der selbst keine Transportaktivität besitzt. Das Protein scheint die
extrazelluläre und/oder intrazelluläre Mg2+-Konzentration zu messen und
darauffolgend andere Proteine, die fĂĽr die Mg2+-Mobilisierung in der Zelle
verantwortlich sind, zu aktivieren. Diese Daten charakterisieren CNNM2 als
zentralen Faktor für die intrazelluläre Mg2+-Homöostase und es kann angenommen
werden, dass die beiden SLC41 Proteine kooperativ mit dem Mg2+-Sensor CNNM2
die zelluläre Mg2+-Homöostase regulieren
ROV vs trawling approaches in the study of benthic communities: The case of Pennatula rubra (Cnidaria: Pennatulacea)
Megabenthic soft bottom communities of trawlable grounds have been studied since the first few decades of the last century, thanks to trawl fishing technologies. Despite providing an extensive amount of presence data, trawling cannot be considered reliable from a quantitative point of view, frequently giving only weak information about sessile species density, large and small-scale distribution and main habitat features. The recent development of visual technologies on remotely operated vehicles (ROVs) can give a more accurate approach for the study of mega-epibenthic communities. The present study reports the application of both ROV imaging and trawling approaches for the study of a large aggregation (i.e. field) of the red sea pen Pennatula rubra in the Ionian Sea. Density, biomass and population structure were studied in the same population of P. rubra. The density assessed by ROV was significantly higher than that estimated with a three-year series of trawling surveys. Trawling gear efficiency in the removal of P. rubra was low overall. Incidental mortality can be very high due to damage to those specimens that encounter the trawl net but are not directly captured. However, sampling of several colonies by trawling was necessary to establish biometric correlations to estimates of size and biomass from ROV imaging. Trawling catch abundance/biomass data could be useful to identify areas of higher concentration of sea pens, while ROV imaging can be used to monitor these fields in a non-destructive manner that would be consistent with protection measures