10 research outputs found

    EGFR Mutation Promotes Glioblastoma through Epigenome and Transcription Factor Network Remodeling

    No full text
    Epidermal growth factor receptor (EGFR) gene amplification and mutations are the most common oncogenic events in glioblastoma (GBM), but the mechanisms by which they promote aggressive tumor growth are not well understood. Here, through integrated epigenome and transcriptome analyses of cell lines, genotyped clinical samples, and TCGA data, we show that EGFR mutations remodel the activated enhancer landscape of GBM, promoting tumorigenesis through a SOX9 and FOXG1-dependent transcriptional regulatory network in vitro and in vivo. The most common EGFR mutation, EGFRvIII, sensitizes GBM cells to the BET-bromodomain inhibitor JQ1 in a SOX9, FOXG1-dependent manner. These results identify the role of transcriptional/epigenetic remodeling in EGFR-dependent pathogenesis and suggest a mechanistic basis for epigenetic therapy

    EGFR Mutation Promotes Glioblastoma through Epigenome and Transcription Factor Network Remodeling

    No full text
    Epidermal Growth Factor Receptor (EGFR) gene amplification and mutations are the most common oncogenic events in Glioblastoma (GBM), but the mechanisms by which they promote aggressive tumor growth are not well understood. Here, through integrated epigenome and transcriptome analyses of cell lines, genotyped clinical samples and TCGA data, we show that EGFR mutations remodel the activated enhancer landscape of GBM, promoting tumorigenesis through a SOX9 and FOXG1-dependent transcriptional regulatory network in vitro and in vivo. The most common EGFR mutation, EGFRvIII, sensitizes GBM cells to the BET-bromodomain inhibitor JQ1 in a SOX9, FOXG1-dependent manner. These results identify the role of transcriptional/epigenetic remodeling in EGFR-dependent pathogenesis and suggest a mechanistic basis for epigenetic therapy

    IMP dehydrogenase-2 drives aberrant nucleolar activity and promotes tumorigenesis in glioblastoma

    No full text
    In many cancers, high proliferation rates correlate with elevation of rRNA and tRNA levels, and nucleolar hypertrophy. However, the underlying mechanisms linking increased nucleolar transcription and tumorigenesis are only minimally understood. Here we show that IMP dehydrogenase-2 (IMPDH2), the rate-limiting enzyme for de novo guanine nucleotide biosynthesis, is overexpressed in the highly lethal brain cancer glioblastoma. This leads to increased rRNA and tRNA synthesis, stabilization of the nucleolar GTP-binding protein nucleostemin, and enlarged, malformed nucleoli. Pharmacological or genetic inactivation of IMPDH2 in glioblastoma reverses these effects and inhibits cell proliferation, whereas untransformed glia cells are unaffected by similar IMPDH2 perturbations. Impairment of IMPDH2 activity triggers nucleolar stress and growth arrest of glioblastoma cells even in the absence of functional p53. Our results reveal that upregulation of IMPDH2 is a prerequisite for the occurance of aberrant nucleolar function and increased anabolic processes in glioblastoma, which constitutes a primary event in gliomagenesis

    DESI Peculiar Velocity Survey – Fundamental Plane

    No full text
    International audienceThe Dark Energy Spectroscopic Instrument (DESI) Peculiar Velocity Survey aims to measure the peculiar velocities of early and late type galaxies within the DESI footprint using both the Fundamental Plane and Tully-Fisher relations. Direct measurements of peculiar velocities can significantly improve constraints on the growth rate of structure, reducing uncertainty by a factor of approximately 2.5 at redshift 0.1 compared to the DESI Bright Galaxy Survey's redshift space distortion measurements alone. We assess the quality of stellar velocity dispersion measurements from DESI spectroscopic data. These measurements, along with photometric data from the Legacy Survey, establish the Fundamental Plane relation and determine distances and peculiar velocities of early-type galaxies. During Survey Validation, we obtain spectra for 6698 unique early-type galaxies, up to a photometric redshift of 0.15. 64% of observed galaxies (4267) have relative velocity dispersion errors below 10%. This percentage increases to 75% if we restrict our sample to galaxies with spectroscopic redshifts below 0.1. We use the measured central velocity dispersion, along with photometry from the DESI Legacy Imaging Surveys, to fit the Fundamental Plane parameters using a 3D Gaussian maximum likelihood algorithm that accounts for measurement uncertainties and selection cuts. In addition, we conduct zero-point calibration using the absolute distance measurements to the Coma cluster, leading to a value of the Hubble constant, H0=76.05±0.35H_0 = 76.05 \pm 0.35(statistical) ±0.49\pm 0.49(systematic FP) ±4.86\pm 4.86(statistical due to calibration) km s1Mpc1\mathrm{km \ s^{-1} Mpc^{-1}}. This H0H_0 value is within 2σ2\sigma of Planck Cosmic Microwave Background results and within 1σ1\sigma, of other low redshift distance indicator-based measurements

    DESI Peculiar Velocity Survey – Fundamental Plane

    No full text
    International audienceThe Dark Energy Spectroscopic Instrument (DESI) Peculiar Velocity Survey aims to measure the peculiar velocities of early and late type galaxies within the DESI footprint using both the Fundamental Plane and Tully-Fisher relations. Direct measurements of peculiar velocities can significantly improve constraints on the growth rate of structure, reducing uncertainty by a factor of approximately 2.5 at redshift 0.1 compared to the DESI Bright Galaxy Survey's redshift space distortion measurements alone. We assess the quality of stellar velocity dispersion measurements from DESI spectroscopic data. These measurements, along with photometric data from the Legacy Survey, establish the Fundamental Plane relation and determine distances and peculiar velocities of early-type galaxies. During Survey Validation, we obtain spectra for 6698 unique early-type galaxies, up to a photometric redshift of 0.15. 64% of observed galaxies (4267) have relative velocity dispersion errors below 10%. This percentage increases to 75% if we restrict our sample to galaxies with spectroscopic redshifts below 0.1. We use the measured central velocity dispersion, along with photometry from the DESI Legacy Imaging Surveys, to fit the Fundamental Plane parameters using a 3D Gaussian maximum likelihood algorithm that accounts for measurement uncertainties and selection cuts. In addition, we conduct zero-point calibration using the absolute distance measurements to the Coma cluster, leading to a value of the Hubble constant, H0=76.05±0.35H_0 = 76.05 \pm 0.35(statistical) ±0.49\pm 0.49(systematic FP) ±4.86\pm 4.86(statistical due to calibration) km s1Mpc1\mathrm{km \ s^{-1} Mpc^{-1}}. This H0H_0 value is within 2σ2\sigma of Planck Cosmic Microwave Background results and within 1σ1\sigma, of other low redshift distance indicator-based measurements

    HIV-associated distal neuropathic pain is associated with smaller total cerebral cortical gray matter

    No full text
    Despite modern antiretroviral therapy, HIV-associated sensory neuropathy affects over 50% of HIV patients. The clinical expression of HIV neuropathy is highly variable: many individuals report few symptoms, but about half report distal neuropathic pain (DNP), making it one of the most prevalent, disabling and treatment-resistant complications of HIV disease. The presence and intensity of pain is not fully explained by the degree of peripheral nerve damage, making it unclear why some patients do, and others do not, report pain. To better understand central nervous system contributions to HIV DNP, we performed a cross-sectional analysis of structural magnetic resonance imaging (MRI) volumes in 241 HIV-infected participants from an observational multi-site cohort study at five US sites (CNS HIV Antiretroviral Treatment Effects Research Study, CHARTER). The association between DNP and the structural imaging outcomes was investigated using both linear and nonlinear (Gaussian Kernel support vector) multivariable regression, controlling for key demographic and clinical variables. Severity of DNP symptoms was correlated with smaller total cerebral cortical gray matter volume (R = −0.24; p = 0.004). Understanding the mechanisms for this association between smaller total cortical volumes and DNP may provide insight into HIV DNP chronicity and treatment-resistance
    corecore