317 research outputs found
Capital Regulation, Liquidity Requirements and Taxation in a Dynamic Model of Banking
This paper formulates a dynamic model of a bank exposed to both credit and liquidity risk, which can resolve financial distress in three costly forms: fire sales, bond issuance and equity issuance. We use the model to analyze the impact of capital regulation, liquidity requirements and taxation on banks' optimal policies and metrics of efficiency of intermediation and social value. We obtain three main results. First, mild capital requirements increase bank lending, bank efficiency and social value relative to an unregulated bank, but these benefits turn into costs if capital requirements are too stringent. Second, liquidity requirements reduce bank lending, efficiency and social value significantly, they nullify the benifits of mild capital requirements, and their private and social costs increase monotonically with their stringency. Third, increases in corporate income and bank liabilities taxes reduce bank lending, bank effciency and social value, with tax receipts increasing with the former but decreasing with the latter. Moreover, the effects of an increase in both forms of taxation are dampened if they are jointly implemented with increases in capital and liquidity requirements.Capital requirements;liquidity requirements;taxation of liabilities. JEL Classifications
Flatness optimization of micro-injection moulded parts: The case of a PMMA microfluidic component
Micro-injection moulding (µ-IM) has attracted a lot of interest because of its potential for the production of low-cost, miniaturized parts in high-volume. Applications of this technology are, amongst others, microfluidic components for lab-on-a-chip devices and micro-optical components. In both cases, the control of the part flatness is a key aspect to maintaining the component's functionality. The objective of this work is to determine the factors affecting the flatness of a polymer part manufactured by µ-IM and to control the manufacturing process with the aim of minimizing the in-process part deformation. As a case study, a PMMA microfluidic substrate with overall dimensions of 10 mm diameter and 1 mm thickness was investigated by designing a µ-IM experiment having flatness as the experimental response. The part flatness was measured using a micro-coordinate measuring machine. Finite elements analysis was also carried out to study the optimal ejection pin configuration. The results of this work show that the control of the µ-IM process conditions can improve the flatness of the polymer part up to about 15 µm. Part flatness as low as 4 µm can be achieved by modifying the design of the ejection system according to suggested guideline
HKUST-1-Doped High-Resolution Volume Holographic Gratings
We report on transmission holographic gratings doped with metal organic frameworks (MOFs). As a first attempt, we focused on MOF-199, also known as HKUST-1, which is an efficient adsorbent of VOCs. HKUST-1 is not soluble in the pre-polymerized holographic mixture. For this reason, samples containing HKUST-1 show high light scattering. In this work, the recording of HKUST-1-doped one-dimensional transmission phase gratings is demonstrated. The optical properties of the recorded structures, such as diffraction efficiency and average refractive index changes, are reported by using angular analysis measurements. A first attempt to demonstrate the possibility of using the doped gratings as sensors is also reported
Light-Controlled Direction of Distributed Feedback Laser Emission by Photo-Mobile Polymer Films
We report on the realization of Distributed Feedback (DFB) lasing by a high-resolution reflection grating integrated in a Photomobile Polymer (PMP) film. The grating is recorded in a recently developed holographic mixture basically containing halolakanes/acrylates and a fluorescent dye molecule (Rhodamine 6G). The PMP-mixture is placed around the grating spot and a subsequent curing/photo-polymerization process is promoted by UV-irradiation. Such a process brings to the simultaneous formation of the PMP-film and the covalent link of the PMP-film to the DFB-grating area (PMP-DFB system). The PMP-DFB allows lasing action when optically pumped with a nano-pulsed green laser source. Moreover, under a low-power light-irradiation the PMP-DFB bends inducing a spatial readdressing of the DFB-laser emission. This device is the first example of a light-controlled direction of a DFB laser emission. It could represent a novel disruptive optical technology in many fields of Science, making feasible the approach to free standing and light-controllable lasers
Dynamics of Drosophila embryonic patterning network perturbed in space and time using microfluidics
Biochemical networks are perturbed both by fluctuations in environmental conditions and genetic variation. These perturbations must be compensated for, especially when they occur during embryonic pattern formation. Complex chemical reaction networks displaying spatiotemporal dynamics have been controlled and understood by perturbing their environment in space and time. Here, we apply this approach using microfluidics to investigate the robust network in Drosophila melanogaster that compensates for variation in the Bicoid morphogen gradient. We show that the compensation system can counteract the effects of extremely unnatural environmental conditions-a temperature step-in which the anterior and posterior halves of the embryo are developing at different temperatures and thus at different rates. Embryonic patterning was normal under this condition, suggesting that a simple reciprocal gradient system is not the mechanism of compensation. Time-specific reversals of the temperature step narrowed down the critical period for compensation to between 65 and 100 min after onset of embryonic development. The microfluidic technology used here may prove useful to future studies, as it allows spatial and temporal regulation of embryonic development
Reliability in long-term clinical studies of disease-modifying therapies for relapsing-remitting multiple sclerosis: A systematic review
Background Although relapsing-remitting multiple sclerosis (RRMS) has a chronic course, little information is known about the comparison between the disease-modifying therapies (DMT) for long-term outcomes. We aimed to conduct a systematic review of randomized clinical trial (RCT) extension and observational studies to examine the efficacy and safety of all available DMT for RRMS, compare the evidence with that derived from mid-term studies, and investigate whether the published long-term data are robust and reliable enough to inform clinical decision-making concerning RRMS treatment. Method PubMed, Scopus, and manual searches were performed until October 2019. The clinical outcomes of long- and mid-term studies were compared. ROBINS-I was used to assess the methodological qualities of the long-term studies. PROSPERO number CRD42019123361. Results Nineteen long-term studies (9,018 participants) were included in the systematic review. All studies presented serious or critical risks of bias that were mainly due to confounding, selection, and missing data biases. The annualised relapse rates (ARR) observed in the long-term studies are lower (better) than those from the mid-term studies for most treatments. The main reason for this ARR decrease could be a selection bias for good responders in the long-term studies, since many studies show a loss of patients between the mid- and long-term phases. The safety profiles depend on the study, follow-up, report, and outcome (i.e., discontinuation or number of patients with at least one serious adverse event). Conclusion The currently available long-term data for patients with RRMS exhibit serious or critical risks of bias that preclude robust comparisons between long-term studies. High quality comparative observational studies with long-term follow-ups or RCT extensions with intention-to-treat analyses are needed to support clinical and regulatory practice. Until reliable long-term evidence is available, neurologists should continue to base their conduct on mid-term studies, patients experience and, most importantly, patients needs and predictor factors, according to personalized medicine
Capital Regulation, Liquidity Requirements and Taxation in a Dynamic Model of Banking
This paper formulates a dynamic model of a bank exposed to both credit and liquidity risk, which can resolve financial distress in three costly forms: fire sales, bond issuance and equity issuance. We use the model to analyze the impact of capital regulation, liquidity requirements and taxation on banks' optimal policies and metrics of efficiency of intermediation and social value. We obtain three main results. First, mild capital requirements increase bank lending, bank efficiency and social value relative to an unregulated bank, but these benefits turn into costs if capital requirements are too stringent. Second, liquidity requirements reduce bank lending, efficiency and social value significantly, they nullify the benefits of mild capital requirements, and their private and social costs increase monotonically with their stringency. Third, increases in corporate income and bank liabilities taxes reduce bank lending, bank efficiency and social value, with tax receipts increasing with the former but decreasing with the latter. Moreover, the effects of an increase in both forms of taxation are dampened if they are jointly implemented with increases in capital and liquidity requirements
Sensitive methods for estimating the anchoring strength of nematic liquid crystals on Langmuir-Blodgett monolayers of fatty acids
The anchoring of the nematic liquid crystal
N-(p-methoxybenzylidene)-p-butylaniline (MBBA) on Langmuir-Blodgett monolayers
of fatty acids (COOHCH) was studied as a function of the length
of the fatty acid alkyl chains, (). The monolayers were
deposited onto ITO-coated glass plates which were used to assemble sandwich
cells of various thickness that were filled with MBBA in the nematic phase. The
mechanism of relaxation from the flow-induced quasi-planar to the
surface-induced homeotropic alignment was studied for the four decreases
linearly with increasing the length of the alkyl chains which suggests that
the Langmuir-Blodgett film plays a role in the phenomenon. This fact was
confirmed by a sensitive estimation of the anchoring strength of MBBA on the
fatty acid monolayers after anchoring breaking which takes place at the
transition between two electric-field--induced turbulent states, denoted as
DSM1 and DSM2. It was found that the threshold electric field for the anchoring
breaking, which can be considered as a measure of the anchoring strength, also
decreases linearly as increases. Both methods thus possess a high
sensitivity in resolving small differences in anchoring strength. In cells
coated with mixed Langmuir-Blodgett monolayers of two fatty acids ( and
) a maximum of the relaxation speed was observed when the two acids were
present in equal amount. This observation homeotropic cells by changing the
ratio between the components of the surfactant film.Comment: LaTeX article, 20 pages, 15 figures, 17 EPS files. 1 figure added,
references moved. Submitted to Phys. Rev.
- …