2,842 research outputs found

    Adsorption of emerging pollutants with different biochar adsorbents

    Get PDF
    Please click Additional Files below to see the full abstrac

    Italian health professionals on the mandatory COVID-19 vaccine: An online cross-sectional survey

    Get PDF
    Italy was the first country in Europe to make vaccination against COVID-19 mandatory for healthcare professionals by imposing restrictions in cases of non-compliance. This study investigates the opinions of the Italian healthcare professionals' categories affected by the regulation. We performed a qualitative online survey: the questionnaire comprised both close- and open-ended questions. The final dataset included n = 4,677 valid responses. Responses to closed-ended questions were analyzed with descriptive statistics. The framework method was applied for analyzing the open-ended questions. The sample spanned all health professions subject to compulsory vaccination, with a prevalence of physicians (43.8%) and nurses (26.3%). The vaccine adhesion before the introduction of the obligation was substantial. 10.4% declared not to have adhered to the vaccination proposal. Thirty-five percent of HPs who opted not to get vaccinated said they experienced consequences related to their choice. The trust in the vaccine seems slightly cracked, demonstrating overall vaccine confidence among professionals. Nonetheless, our results show that whether (or not) professionals adhere to vaccination is not a reliable indicator of consent to how it was achieved. There are criticisms about the lawfulness of the obligation. The data show a great variety of participants interpreting their roles concerning public and individual ethics. The scientific evidence motivates ethics-related decisions-the epidemic of confusing and incorrect information affected professionals. The Law triggered an increased disaffection with the health system and conflicts between professionals. Dealing with the working climate should be a commitment to assume soon

    Information needs on precision medicine: a survey of Italian health care professionals.

    Get PDF
    BACKGROUND: Despite advances in technology development for precision medicine, obstacles remain as barriers to progress and change. In this context simple questions arise: what is the level of understanding of precision medicine among healthcare professionals? We tried to address this question with a survey whose objective was to explore the perception and understanding of precision medicine. METHODS: A questionnaire was administered to a sample made of oncologists, clinical and hospital pharmacists, pharmacologists and infectiologists in the context of five different Italian national congresses. Participation in the survey was voluntary and anonymous. RESULTS: The questionnaire was filled-in by a total number of 1,113 professionals out of 3,670 registered participants in the congresses. About half of respondents stated they were not sufficiently informed about precision medicine, and infectiologists were the ones who felt less informed. Most respondents agreed with the basic principles and definitions of precision medicine and believed this new approach is going to require deep changes in healthcare. CONCLUSIONS: Our findings show that healthcare professionals have partial knowledge on this topic and that there is a significant association between respondents’ knowledge and their clinical specialty. However, despite some misconceptions about precision medicine, a genuine interest and familiarity with its basic principles seems to emerge.

    RILP regulates vacuolar ATPase through interaction with the V1G1 subunit

    Get PDF
    Rab-interacting lysosomal protein (RILP) is a downstream effector of the Rab7 GTPase. GTP-bound Rab7 recruits RILP to endosomal membranes and, together, they control late endocytic traffic, phagosome and autophagosome maturation and are responsible for signaling receptor degradation. We have identified, using different approaches, the V1G1 (officially known as ATP6V1G1) subunit of the vacuolar ATPase (V-ATPase) as a RILP-interacting protein. V1G1 is a component of the peripheral stalk and is fundamental for correct V-ATPase assembly. We show here that RILP regulates the recruitment of V1G1 to late endosomal and lysosomal membranes but also controls V1G1 stability. Indeed, we demonstrate that V1G1 can be ubiquitylated and that RILP is responsible for proteasomal degradation of V1G1. Furthermore, we demonstrate that alterations in V1G1 expression levels impair V-ATPase activity. Thus, our data demonstrate for the first time that RILP regulates the activity of the V-ATPase through its interaction with V1G1. Given the importance of V-ATPase in several cellular processes and human diseases, these data suggest that modulation of RILP activity could be used to control V-ATPase function

    In-Vivo Real-Time Control of Protein Expression from Endogenous and Synthetic Gene Networks

    Get PDF
    We describe an innovative experimental and computational approach to control the expression of a protein in a population of yeast cells. We designed a simple control algorithm to automatically regulate the administration of inducer molecules to the cells by comparing the actual protein expression level in the cell population with the desired expression level. We then built an automated platform based on a microfluidic device, a time-lapse microscopy apparatus, and a set of motorized syringes, all controlled by a computer. We tested the platform to force yeast cells to express a desired fixed, or time-varying, amount of a reporter protein over thousands of minutes. The computer automatically switched the type of sugar administered to the cells, its concentration and its duration, according to the control algorithm. Our approach can be used to control expression of any protein, fused to a fluorescent reporter, provided that an external molecule known to (indirectly) affect its promoter activity is available

    Allele-specific silencing as therapy for familial amyotrophic lateral sclerosis caused by the p.G376D TARDBP mutation

    Get PDF
    Amyotrophic lateral sclerosis is a neurodegenerative disease characterized by the degeneration of motor neurons. There is no treatment for this disease that affects the ability to move, eat, speak and finally breathe, causing death. In an Italian family, a heterozygous pathogenic missense variant has been previously discovered in Exon 6 of the gene TARDBP encoding the TAR DNA-binding protein 43 protein. Here, we developed a potential therapeutic tool based on allele-specific small interfering RNAs for familial amyotrophic lateral sclerosis with the heterozygous missense mutation c.1127G > A. We designed a small interfering RNA that was able to diminish specifically the expression of the exogenous Green Fluorescent Protein (TAR DNA-binding protein 43(G376D) mutant protein) in HEK-293T cells but not that of the Green Fluorescent Protein (TAR DNA-binding protein 43 wild-type). Similarly, this small interfering RNA silenced the mutated allele in fibroblasts derived from patients with amyotrophic lateral sclerosis but did not silence the wild-type gene in control fibroblasts. In addition, we established that silencing the mutated allele was able to strongly reduce the pathological cellular phenotypes induced by TAR DNA-binding protein 43(G376D) expression, such as the presence of cytoplasmic aggregates. Thus, we have identified a small interfering RNA that could be used to silence specifically the mutated allele to try a targeted therapy for patients carrying the p.G376D TAR DNA-binding protein 43 mutation

    Charged particle's flux measurement from PMMA irradiated by 80 MeV/u carbon ion beam

    Full text link
    Hadrontherapy is an emerging technique in cancer therapy that uses beams of charged particles. To meet the improved capability of hadrontherapy in matching the dose release with the cancer position, new dose monitoring techniques need to be developed and introduced into clinical use. The measurement of the fluxes of the secondary particles produced by the hadron beam is of fundamental importance in the design of any dose monitoring device and is eagerly needed to tune Monte Carlo simulations. We report the measurements done with charged secondary particles produced from the interaction of a 80 MeV/u fully stripped carbon ion beam at the INFN Laboratori Nazionali del Sud, Catania, with a Poly-methyl methacrylate target. Charged secondary particles, produced at 90°\degree with respect to the beam axis, have been tracked with a drift chamber, while their energy and time of flight has been measured by means of a LYSO scintillator. Secondary protons have been identified exploiting the energy and time of flight information, and their emission region has been reconstructed backtracking from the drift chamber to the target. Moreover a position scan of the target indicates that the reconstructed emission region follows the movement of the expected Bragg peak position. Exploting the reconstruction of the emission region, an accuracy on the Bragg peak determination in the submillimeter range has been obtained. The measured differential production rate for protons produced with EkinProd>E^{\rm Prod}_{\rm kin} > 83 MeV and emitted at 90°\degree with respect to the beam line is: dNP/(dNCdΩ)(EkinProd>83 MeV,θ=90°)=(2.69±0.08stat±0.12sys)×104sr1dN_{\rm P}/(dN_{\rm C}d\Omega)(E^{\rm Prod}_{\rm kin} > 83 {\rm ~MeV}, \theta=90\degree)= (2.69\pm 0.08_{\rm stat} \pm 0.12_{\rm sys})\times 10^{-4} sr^{-1}.Comment: 13 pages, 9 figure

    Monitoring of hadrontherapy treatments by means of charged particle detection

    Get PDF
    The interaction of the incoming beam radiation with the patient body in hadrontherapy treatments produces secondary charged and neutral particles, whose detection can be used for monitoring purposes and to perform an on-line check of beam particle range. In the context of ion-therapy with active scanning, charged particles are potentially attractive since they can be easily tracked with a high efficiency, in presence of a relatively low background contamination. In order to verify the possibility of exploiting this approach for in-beam monitoring in ion-therapy, and to guide the design of specific detectors, both simulations and experimental tests are being performed with ion beams impinging on simple homogeneous tissue-like targets (PMMA). From these studies, a resolution of the order of few millimeters on the single track has been proven to be sufficient to exploit charged particle tracking for monitoring purposes, preserving the precision achievable on longitudinal shape. The results obtained so far show that the measurement of charged particles can be successfully implemented in a technology capable of monitoring both the dose profile and the position of the Bragg peak inside the target and finally lead to the design of a novel profile detector. Crucial aspects to be considered are the detector positioning, to be optimized in order to maximize the available statistics, and the capability of accounting for the multiple scattering interactions undergone by the charged fragments along their exit path from the patient body. The experimental results collected up to now are also valuable for the validation of Monte Carlo simulation software tools and their implementation in Treatment Planning Software packages

    State of the art on the SARS-CoV-2 toolkit for antigen detection: one year later

    Get PDF
    The recent global events of COVID-19 in 2020 have alerted the world to the risk of viruses and their impacts on human health, including their impacts in the social and economic sectors. Rapid tests are urgently required to enable antigen detection and thus to facilitate rapid and simple evaluations of contagious individuals, with the overriding goal to delimitate spread of the virus among the population. Many efforts have been achieved in recent months through the realization of novel diagnostic tools for rapid, affordable, and accurate analysis, thereby enabling prompt responses to the pandemic infection. This review reports the latest results on electrochemical and optical biosensors realized for the specific detection of SARS-CoV-2 antigens, thus providing an overview of the available diagnostics tested and marketed for SARS-CoV-2 antigens as well as their pros and cons
    corecore