19,076 research outputs found

    Comment on "Bell's Theorem without Inequalities and without Probabilities for Two Observers"

    Full text link
    In this Comment we show that Cabello's argument [Phys. Rev. Lett. 86, 1911 (2001)] which proves the nonlocal feature of any classical model of quantum mechanics based on Einstein-Podolsky-Rosen (EPR) criterion of elements of reality, must involve at least four distant observers rather than the two employed by the author. Moreover we raise a remark on the necessity of performing a real experiment confirming Cabello's argument.Comment: 1 page, REVTex4 fil

    A Finite Element Model for Describing the Effect of Muscle Shortening on Surface EMG

    Get PDF
    A finite-element model for the generation of single fiber action potentials in a muscle undergoing various degrees of fiber shortening is developed. The muscle is assumed fusiform with muscle fibers following a curvilinear path described by a Gaussian function. Different degrees of fiber shortening are simulated by changing the parameters of the fiber path and maintaining the volume of the muscle constant. The conductivity tensor is adapted to the muscle fiber orientation. In each point of the volume conductor, the conductivity of the muscle tissue in the direction of the fiber is larger than that in the transversal direction. Thus, the conductivity tensor changes point-by-point with fiber shortening, adapting to the fiber paths. An analytical derivation of the conductivity tensor is provided. The volume conductor is then studied with a finite-element approach using the analytically derived conductivity tensor. Representative simulations of single fiber action potentials with the muscle at different degrees of shortening are presented. It is shown that the geometrical changes in the muscle, which imply changes in the conductivity tensor, determine important variations in action potential shape, thus affecting its amplitude and frequency content. The model provides a new tool for interpreting surface EMG signal features with changes in muscle geometry, as it happens during dynamic contractions

    Static NLO susceptibilities: testing approximation schemes against exact results

    Get PDF
    The reliability of the approximations commonly adopted in the calculation of static optical (hyper)polarizabilities is tested against exact results obtained for an interesting toy-model. The model accounts for the principal features of typical nonlinear organic materials with mobile electrons strongly coupled to molecular vibrations. The approximations introduced in sum over states and finite field schemes are analyzed in detail. Both the Born-Oppenheimer and the clamped nucleus approximations turn out to be safe for molecules, whereas for donor-acceptor charge transfer complexes deviations from adiabaticity are expected. In the regime of low vibrational frequency, static susceptibilities are strongly dominated by the successive derivatives of the potential energy and large vibrational contributions to hyperpolarizabilities are found. In this regime anharmonic corrections to hyperpolarizabilities are very large, and the harmonic approximation, exact for the linear polarizability, turns out totally inadequate for nonlinear responses. With increasing phonon frequency the role of vibrations smoothly decreases, until, in the antiadiabatic (infinite vibrational frequency) regime, vibrations do not contribute anymore to static susceptibilities, and the purely electronic responses are regained.Comment: 9 pages, including 3 figure

    Entropy theorems in classical mechanics, general relativity, and the gravitational two-body problem

    Get PDF
    In classical Hamiltonian theories, entropy may be understood either as a statistical property of canonical systems, or as a mechanical property, that is, as a monotonic function of the phase space along trajectories. In classical mechanics, there are theorems which have been proposed for proving the non-existence of entropy in the latter sense. We explicate, clarify and extend the proofs of these theorems to some standard matter (scalar and electromagnetic) field theories in curved spacetime, and then we show why these proofs fail in general relativity; due to properties of the gravitational Hamiltonian and phase space measures, the second law of thermodynamics holds. As a concrete application, we focus on the consequences of these results for the gravitational two-body problem, and in particular, we prove the non-compactness of the phase space of perturbed Schwarzschild-Droste spacetimes. We thus identify the lack of recurring orbits in phase space as a distinct sign of dissipation and hence entropy production.Comment: 39 pages, 3 figures; v2: version to appear in Phys. Rev. D, references adde

    Testing Primordial Black Holes as Dark Matter through LISA

    Full text link
    The idea that primordial black holes (PBHs) can comprise most of the dark matter of the universe has recently reacquired a lot of momentum. Observational constraints, however, rule out this possibility for most of the PBH masses, with a notable exception around 1012M10^{-12} M_\odot. These light PBHs may be originated when a sizeable comoving curvature perturbation generated during inflation re-enters the horizon during the radiation phase. During such a stage, it is unavoidable that gravitational waves (GWs) are generated. Since their source is quadratic in the curvature perturbations, these GWs are generated fully non-Gaussian. Their frequency today is about the mHz, which is exactly the range where the LISA mission has the maximum of its sensitivity. This is certainly an impressive coincidence. We show that this scenario of PBHs as dark matter can be tested by LISA by measuring the GW two-point correlator. On the other hand, we show that the short observation time (as compared to the age of the universe) and propagation effects of the GWs across the perturbed universe from the production point to the LISA detector suppress the bispectrum to an unobservable level. This suppression is completely general and not specific to our model.Comment: 22 pages, 12 figures. v3: matching published versio

    Polarized thermal emission by thin metal wires

    Full text link
    We report new measurements of the linear polarization of thermal radiation emitted by incandescent thin tungsten wires, with thicknesses ranging from five to hundred microns. Our data show very good agreement with theoretical predictions, based on Drude-type fits to measured optical properties of tungsten.Comment: 12 pages, 4 encapsulated figures. This new version matches the one published in New. J. Phys.. Improved presentation, more references added, and one new figure include

    Radio-quiet and radio-loud pulsars: similar in Gamma-rays but different in X-rays

    Get PDF
    We present new Chandra and XMM-Newton observations of a sample of eight radio-quiet Gamma-ray pulsars detected by the Fermi Large Area Telescope. For all eight pulsars we identify the X-ray counterpart, based on the X-ray source localization and the best position obtained from Gamma-ray pulsar timing. For PSR J2030+4415 we found evidence for an about 10 arcsec-long pulsar wind nebula. Our new results consolidate the work from Marelli et al. 2011 and confirm that, on average, the Gamma-ray--to--X-ray flux ratios (Fgamma/Fx) of radio-quiet pulsars are higher than for the radio-loud ones. Furthermore, while the Fgamma/Fx distribution features a single peak for the radio-quiet pulsars, the distribution is more dispersed for the radio-loud ones, possibly showing two peaks. We discuss possible implications of these different distributions based on current models for pulsar X-ray emission.Comment: Accepted for publication in The Astrophysical Journal; 12 pages, 3 figures, 2 table
    corecore