16 research outputs found

    Intestinal transport of calcium in rat biliary cirrhosis.

    No full text
    The characteristics of intestinal calcium transport in chronic cholestasis remain largely unknown. Using an experimental model of biliary cirrhosis in the rat, we aimed to investigate changes in calcium transport at the jejunal and ileal levels. Two methods were used: 1) uptake of 45Ca in brush border membrane vesicles and 2) measurements of transepithelial fluxes of calcium in Ussing chambers. Thirty days postsurgery, cholestatic rats presented biliary cirrhosis, with normal growth, normal daily energy, and calcium intakes, but had depressed circulating levels of 25-(OH)-vitamin D2 and 1,25-(OH)-vitamin D3. Compared with sham-operated controls, 45Ca uptake ([Ca2+] = 0.03 mmol) measured in vesicles from cholestatic rats was decreased by 3-fold in the duodenojejunum, in concordance with a lower content in brush border membrane calmodulin. Other changes in brush border membrane composition included decreases in structural proteins, microvillous enzymes, and in triglyceride content. Transepithelial fluxes of calcium measured in the ileum ([Ca2+] = 1.2 mmol) revealed in controls a net basal secretion flux (Jnet = -30.4 +/- 8.1 mmol.h-1.cm-2) that was reduced by 3-fold (p < 0.05) in vitamin D-deficient rats (Jnet = -10.4 +/- 4.8 mmol.h-1.cm-2). In response to 25-(OH)-vitamin D2 treatment, calcium uptake rates increased by 40% in the jejunum, whereas in the ileum, the secretion flux returned to basal control levels. Oral administration of taurocholate or tauroursodeoxycholate (50 mmol) depressed almost completely calcium uptake capacity in the duodenojejunum. By complexing free calcium, tauroconjugated bile acids inhibited in vitro calcium uptake proportionally to their concentration in the medium (0-40 mmol). Our data indicate that, in rat biliary cirrhosis, transport capacity of calcium in the duodenojejunum is markedly reduced in association with vitamin D deficiency and alterations in brush border membrane composition

    Deep-sea bioluminescence blooms after dense water formation at the ocean surface

    No full text
    The deep ocean is the largest and least known ecosystem on Earth. It hosts numerous pelagic organisms, most of which are able to emit light. Here we present a unique data set consisting of a 2.5-year long record of light emission by deep-sea pelagic organisms, measured from December 2007 to June 2010 at the ANTARES underwater neutrino telescope in the deep NW Mediterranean Sea, jointly with synchronous hydrological records. This is the longest continuous time-series of deep-sea bioluminescence ever recorded. Our record reveals several weeks long, seasonal bioluminescence blooms with light intensity up to two orders of magnitude higher than background values, which correlate to changes in the properties of deep waters. Such changes are triggered by the winter cooling and evaporation experienced by the upper ocean layer in the Gulf of Lion that leads to the formation and subsequent sinking of dense water through a process known as "open-sea convection". It episodically renews the deep water of the study area and conveys fresh organic matter that fuels the deep ecosystems. Luminous bacteria most likely are the main contributors to the observed deep-sea bioluminescence blooms. Our observations demonstrate a consistent and rapid connection between deep open-sea convection and bathypelagic biological activity, as expressed by bioluminescence. In a setting where dense water formation events are likely to decline under global warming scenarios enhancing ocean stratification, in situ observatories become essential as environmental sentinels for the monitoring and understanding of deep-sea ecosystem shifts

    The control of eriophyoid mites: state of the art and future challenges

    No full text
    The superfamily of the Eriophyoidea is a large and diverse group of mites, including a number of species of economic importance, mainly on perennial plants in agriculture and forestry. This review focuses on the economic importance and pest status of this group of mites, with emphasis on some genera. The available acaricide portfolio is reviewed and the influence of EU legislation policy on the sustainable control of Eriophyoidea is investigated. Possible generic guidelines for sustainable control and resistance management with special reference to the European situation are discussed. Recent advances in biological and integrated control of eriophyid mite pests and the implementation of these techniques in crops are explored. Furthermore, the relevance of studies on behaviour, epidemiology and diagnostics in general terms and as a strategic necessity is pointed out

    Deep-Sea Bioluminescence Blooms after Dense Water Formation at the Ocean Surface

    No full text
    The deep ocean is the largest and least known ecosystem on Earth. It hosts numerous pelagic organisms, most of which are able to emit light. Here we present a unique data set consisting of a 2.5-year long record of light emission by deep-sea pelagic organisms, measured from December 2007 to June 2010 at the ANTARES underwater neutrino telescope in the deep NW Mediterranean Sea, jointly with synchronous hydrological records. This is the longest continuous time-series of deep-sea bioluminescence ever recorded. Our record reveals several weeks long, seasonal bioluminescence blooms with light intensity up to two orders of magnitude higher than background values, which correlate to changes in the properties of deep waters. Such changes are triggered by the winter cooling and evaporation experienced by the upper ocean layer in the Gulf of Lion that leads to the formation and subsequent sinking of dense water through a process known as “open-sea convection”. It episodically renews the deep water of the study area and conveys fresh organic matter that fuels the deep ecosystems. Luminous bacteria most likely are the main contributors to the observed deep-sea bioluminescence blooms. Our observations demonstrate a consistent and rapid connection between deep open-sea convection and bathypelagic biological activity, as expressed by bioluminescence. In a setting where dense water formation events are likely to decline under global warming scenarios enhancing ocean stratification, in situ observatories become essential as environmental sentinels for the monitoring and understanding of deep-sea ecosystem shifts
    corecore