273 research outputs found

    The Health Impact of Onchocerciasis Control in Africa

    Get PDF
    __Abstract__ Onchocerciasis is a tropical disease endemic to Sub-Saharan Africa, Yemen, and parts of Latin America, and is caused by the filarial nematode Onchocerca volvulus, which is found exclusively in humans. Adult specimens of this roundworm reside in subcutaneous and deep-tissue nodules, and have an estimated average reproductive life span of about ten years (Duke 1968; Plaisier et al. 1991b). While female worms grow up to 50 cm long and remain sedentary in the nodules, male worms are somewhat smaller (up to 42 cm) and migrate from nodule to nodule, inseminating female worms (Schulz- Key and Albiez 1977; Duke 1993). As long as they are regularly inseminated, female worms produce larvae, so-called microfilariae (mf), which measure up to 360 μm and migrate through the host’s tissues and live up to two years (Duke 1968). Mf may be picked up from the host’s skin by the bite of a blackfly (genus Simulium). In Africa, species of the S. damnosum complex are mainly responsible for transmission of infection, whereas in Latin America, several other Simulium species drive transmission (Basáñez, Churcher, and Grillet 2009; Adler, Cheke, and Post 2010). All Simulium species breed in oxygen-rich water (e.g. river rapids). During their passage through a blackfly, the mf—now called stage L1 larvae—develop and moult into infective stage L3 larvae, which may be transmitted to another human during a fly’s next bloodmeal (Duke, Moore, and De León 1967). A small fraction of the transmitted stage L3 larvae eventually develop into adult worms (male or female). In turn, these may start reproducing after a prepatent period of 12 to 16 months (Duke 1968, 1980), completing the cycle of transmission (Figure 1.1)

    Predicting the risk and speed of drug resistance emerging in soil-transmitted helminths during preventive chemotherapy

    Get PDF
    Control of soil-transmitted helminths relies heavily on regular large-scale deworming of high-risk groups (e.g., children) with benzimidazole derivatives. Although drug resistance has not yet been documented in human soil-transmitted helminths, regular deworming of cattle and sheep has led to widespread benzimidazole resistance in veterinary helminths. Here we predict the population dynamics of human soil-transmitted helminth infections and drug resistance during 20 years of regular preventive chemotherapy, using an individual-based model. With the current preventive chemotherapy strategy of mainly targeting children in schools, drug resistance may evolve in soil-transmitted helminths within a decade. More intense preventive chemotherapy strategies increase the prospects of soil-transmitted helminths elimination, but also increase the speed at which drug efficacy declines, especially when implementing community-based preventive chemotherapy (population-wide deworming). If during the last decade, preventive chemotherapy against soil-transmitted helminths has led to resistance, we may not have detected it as drug efficacy has not been structurally monitored, or incorrectly so. These findings highlight the need to develop and implement strategies to monitor and mitigate the evolution of benzimidazole resistance.</p

    Predicting the risk and speed of drug resistance emerging in soil-transmitted helminths during preventive chemotherapy

    Get PDF
    Control of soil-transmitted helminths relies heavily on regular large-scale deworming of high-risk groups (e.g., children) with benzimidazole derivatives. Although drug resistance has not yet been documented in human soil-transmitted helminths, regular deworming of cattle and sheep has led to widespread benzimidazole resistance in veterinary helminths. Here we predict the population dynamics of human soil-transmitted helminth infections and drug resistance during 20 years of regular preventive chemotherapy, using an individual-based model. With the current preventive chemotherapy strategy of mainly targeting children in schools, drug resistance may evolve in soil-transmitted helminths within a decade. More intense preventive chemotherapy strategies increase the prospects of soil-transmitted helminths elimination, but also increase the speed at which drug efficacy declines, especially when implementing community-based preventive chemotherapy (population-wide deworming). If during the last decade, preventive chemotherapy against soil-transmitted helminths has led to resistance, we may not have detected it as drug efficacy has not been structurally monitored, or incorrectly so. These findings highlight the need to develop and implement strategies to monitor and mitigate the evolution of benzimidazole resistance.</p

    In vitro evaluation of defined oligosaccharide fractions in an equine model of inflammation

    Get PDF
    Background: Dietary supplementation with oligosaccharides has been proven to be beneficial for health in several mammalian species. Next to prebiotic effects resulting in a modulation of gut micro biota, immunomodulatory effects of oligosaccharides have been documented in vivo. Supplementation with defined oligosaccharide fractions has been shown to attenuate allergic responses and enhance defensive immune responses. Despite the accumulating evidence for immunomodulatory effects, very limited information is available regarding the direct mechanism of action of oligosaccharides. This study aims to elucidate the effects of selected oligosaccharide fractions on the lipopolysaccharide (LPS) induced inflammatory response in equine peripheral blood mononuclear cells (PBMCs). We investigated three different products containing either galacto-oligosaccharides (GOS) alone, a combination of GOS with fructo-oligosaccharides (FOS), and a triple combination of GOS and FOS with acidic oligosaccharides (AOS), at different concentrations. These products have been used in an identical composition in various previously published in vivo experiments. As the selected oligosaccharide fractions were derived from natural products, the fractions contained defined amounts of mono- and disaccharides and minor amounts of endotoxin, which was taken into account in the design of the study and the analysis of data. Acquired data were analysed in a Bayesian hierarchical linear regression model, accounting for variation between horses.Results: Exposing cultured PBMCs to either GOS or GOS/FOS fractions resulted in a substantial dose-dependent increase of tumour necrosis factor-α (TNF-α) production in LPS challenged PBMCs. In contrast, incubation with GOS/FOS/AOS resulted in a dose-dependent reduction of both TNF-α and interleukin-10 production following LPS challenge. In addition, incubation with GOS/FOS/AOS significantly increased the apparent PBMC viability, indicating a protective or mitogenic effect. Furthermore, mono- and disaccharide control fractions significantly stimulated the inflammatory response in LPS challenged PBMCs as well, though to a lesser extent than GOS and GOS/FOS fractions.Conclusions: We found distinct immunomodulating effects of the investigated standardised oligosaccharide fractions, which either stimulated or suppressed the LPS induced inflammatory response in PBMCs. Both scenarios require additional investigation, to elucidate underlying modulatory mechanisms, and to translate this knowledge into the clinical application of oligosaccharide supplements in foals and other neonates

    The Power of Malaria Vaccine Trials Using Controlled Human Malaria Infection

    Get PDF
    Controlled human malaria infection (CHMI) in healthy human volunteers is an important and powerful tool in clinical malaria vaccine development. However, power calculations are essential to obtain meaningful estimates of protective efficacy, while minimizing the risk of adverse events. To optimize power calculations for CHMI-based malaria vaccine trials, we developed a novel non-linear statistical model for parasite kinetics as measured by qPCR, using data from mosquito-based CHMI experiments in 57 individuals. We robustly account for important sources of variation between and within individuals using a Bayesian framework. Study power is most dependent on the number of individuals in each treatment arm; inter-individual variation in vaccine efficacy and the number of blood samples taken per day matter relatively little. Due to high inter-individual variation in the number of first-generation parasites, hepatic vaccine trials required significantly more study subjects than erythrocytic vaccine trials. We provide power calculations for hypothetical malaria vaccine trials of various designs and conclude that so far, power calculations have been overly optimistic. We further illustrate how upcoming techniques like needle-injected CHMI may reduce required sample sizes

    Feasibility of controlling hookworm infection through preventive chemotherapy: a simulation study using the individual-based WORMSIM modelling framework

    Get PDF
    Background: Globally, hookworms infect 440 million people in developing countries. Especially children and women of childbearing age are at risk of developing anaemia as a result of infection. To control hookworm infection and disease (i.e. reduce the prevalence of medium and heavy infection to <1 %), the World Health Organization has set the target to provide annual or semi-annual preventive chemotherapy (PC) with albendazole (ALB) or mebendazole (MEB) to at least 75 % of all children and women of childbearing age in endemic areas by 2020. Here, we predict the feasibility of achieving <1 % prevalence of medium and heavy infection, based on simulations with an individual-based model. Methods: We developed WORMSIM, a new generalized individual-based modelling framework for transmission and control of helminths, and quantified it for hookworm transmission based on published data. We simulated the impact of standard and more intense PC strategies on trends in hookworm infection, and explored the potential additional impact of interventions that improve access to water, sanitation, and hygiene (WASH). The individual-based framework allowed us to take account of inter-individual heterogeneities in exposure and contribution to transmission of infection, as well as in participation in successive PC rounds. Results: We predict that in low and medium endemic areas, current PC strategies (including targeting of WCBA) will achieve control of hookworm infection (i.e. the parasitological target) within 2 years. In highly endemic areas, control can be achieved with semi-annual PC with ALB at 90 % coverage, combined with interventions that reduce host contributions to the environmental reservoir of infection by 50 %. More intense PC strategies (high frequency and coverage) can help speed up control of hookworm infection, and may be necessary in some extremely highly endemic settings, but are not a panacea against systematic non-participation to PC. Conclusions: Control of hookworm infection by 2020 is feasible with current PC strategies (including targeting of WCBA). In highly endemic areas, PC should be combined with health education and/or WASH interventions

    The potential impact of human visceral leishmaniasis vaccines on population incidence

    Get PDF
    Human visceral leishmaniasis (VL) vaccines are currently under development and there is a need to understand their potential impact on population wide VL incidence. We implement four characteristics from different human VL vaccine candidates into two published VL transmission model variants to estimate the potential impact of these vaccine characteristics on population-wide anthroponotic VL incidence on the Indian subcontinent (ISC). The vaccines that are simulated in this study 1) reduce the infectiousness of infected individuals towards sand flies, 2) reduce risk of developing symptoms after infection, 3) reduce the risk of developing post-kala-azar dermal leishmaniasis (PKDL), or 4) lead to the development of transient immunity. We also compare and combine a vaccine strategy with current interventions to identify their potential role in elimination of VL as a public health problem. We show that the first two simulated vaccine characteristics can greatly reduce VL incidence. For these vaccines, an approximate 60% vaccine efficacy would lead to achieving the ISC elimination target (<1 VL case per 10,000 population per year) within 10 years’ time in a moderately endemic setting when vaccinating 100% of the population. Vaccinating VL cases to prevent the development of PKDL is a promising tool to sustain the low incidence elimination target after regular interventions are halted. Vaccines triggering the development of transient immunity protecting against infection lead to the biggest reduction in VL incidence, but booster doses are required to achieve perduring impact. Even though vaccines are not yet available for implementation, their development should be pursued as their potential impact on transmission can be substantial, both in decreasing incidence at the population level as well as in sustaining the ISC elimination target when other interventions are halted

    A general framework to support cost-efficient survey design choices for the control of soil-transmitted helminths when deploying Kato-Katz thick smear

    Get PDF
    Background To monitor and evaluate soil-transmitted helminth (STH) control programs, the World Health Organization (WHO) recommends screening stools from 250 children, deploying Kato-Katz thick smear (KK). However, it remains unclear whether these recommendations are suffi-cient to make adequate decisions about stopping preventive chemotherapy (PC) (preva-lence of infection &lt;2%) or declaring elimination of STHs as a public health problem (prevalence of moderate-to-heavy intensity (MHI) infections &lt;2%). Methodology We developed a simulation framework to determine the effectiveness and cost of survey designs for decision-making in STH control programs, capturing the operational resources to perform surveys, the variation in egg counts across STH species, across schools, between and within individuals, and between repeated smears. Using this framework and a lot quality assurance sampling approach, we determined the most cost-efficient survey designs (number of schools, subjects, stool samples per subject, and smears per stool sam-ple) for decision-making. Principal findings For all species, employing duplicate KK (sampling 4 to 6 schools and 64 to 70 subjects per school) was the most cost-efficient survey design to assess whether prevalence of any infection intensity was above or under 2%. For prevalence of MHI infections, single KK was the most cost-efficient (sampling 11 to 25 schools and 52 to 84 children per school). Conclusions/Significance KK is valuable for monitoring and evaluation of STH control programs, though we recom-mend deploying a duplicate KK on a single stool sample to stop PC, and a single KK to declare the elimination of STHs as a public health problem.</p

    Tobacco control policies and respiratory conditions among children presenting in primary care

    Get PDF
    Tobacco control policies can protect child health. We hypothesised that the parallel introduction in 2008 of smoke-free restaurants and bars in the Netherlands, a tobacco tax increase and mass media campaign, would be associated with decreases in childhood wheezing/asthma, respiratory tract infections (RTIs), and otitis media with effusion (OME) presenting in primary care. We conducted an interrupted time series study using electronic medical records from the Dutch Integrated Primary Care Information database (2000-2016). We estimated step and slope changes in the incidence of each outcome with negative binomial regression analyses, adjusting for underlying time-trends, seasonality, age, sex, electronic medical record system, urbanisation, and social deprivation. Analysing 1,295,124 person-years among children aged 0-12 years, we found positive step changes immediately after the policies (incidence rate ratio (IRR): 1.07, 95% CI: 1.01-1.14 for wheezing/asthma; IRR: 1.16, 95% CI: 1.13-1.19 for RTIs; and IRR: 1.24, 95% CI: 1.14-1.36 for OME). These were followed by slope decreases for wheezing/asthma (IRR: 0.95/year, 95% CI: 0.93-0.97) and RTIs (IRR: 0.97/year, 95% CI: 0.96-0.98), but a slope increase in OME (IRR: 1.05/year, 95% CI: 1.01-1.09). We found no clear evidence of benefit of changes in tobacco control policies in the Netherlands for the outcomes of interest. Our findings need to be interpreted with caution due to substantial uncertainty in the pre-legislation outcome trends.</p
    • …
    corecore