178 research outputs found

    Multiscale Technicolor and b→sγb \to s \gamma

    Full text link
    Correction to the b→sγb\rightarrow s\gamma branching ratio in the multiscale walking technicolor model (MWTCM) is examined. For the original MWTCM, the correction is too large to explain the recent CLEO data. We show that if topcolor is further introduced, the branching ratio in the topcolor assisted MWTCM can be in agreement with the CLEO data for a certain range of the parameters.Comment: 11 pages, Latex, no macros, 3 figures, hard copy is available upon request. to appear in Z. Phys.

    Structural vulnerability analysis.

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN021364 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Fitting Nonlinear Ordinary Differential Equation Models with Random Effects and Unknown Initial Conditions Using the Stochastic Approximation Expectation–Maximization (SAEM) Algorithm

    Get PDF
    The past decade has evidenced the increased prevalence of irregularly spaced longitudinal data in social sciences. Clearly lacking, however, are modeling tools that allow researchers to fit dynamic models to irregularly spaced data, particularly data that show nonlinearity and heterogeneity in dynamical structures. We consider the issue of fitting multivariate nonlinear differential equation models with random effects and unknown initial conditions to irregularly spaced data. A stochastic approximation expectation–maximization algorithm is proposed and its performance is evaluated using a benchmark nonlinear dynamical systems model, namely, the Van der Pol oscillator equations. The empirical utility of the proposed technique is illustrated using a set of 24-h ambulatory cardiovascular data from 168 men and women. Pertinent methodological challenges and unresolved issues are discussed

    Managerial Risk Perceptions of Corporate Social Responsibility Disclosure : Evidence from the Forestry Sector in China

    Get PDF
    Understanding how managers perceive risks in the decision-making process of corporate social responsibility (CSR) disclosure is vital, especially in sectors with high social and environmental demands on sustainability. The main aim of this study was to explore the impact of managerial risk perceptions and influencing factors on CSR disclosure in the forestry sector of China and to improve the sustainable development of forestry. Utilizing survey data of 214 managers from Chinese forestry enterprises, we analyzed how manager backgrounds, including six variables (gender, age, education level, degree major, number of years working as a manager, and work experience) related to the managers’ risk perceptions of CSR disclosure via a two-stage model. The analyses of the two-stage model revealed that the influence factors differ in the two stages of risk perception. According to our results, influencing factors were not the same at various stages of the CSR reporting process. This requires decision makers to take practical driving factors into account and select managers with different characteristics to carry out the CSR disclosure of forestry enterprises

    Effect of intracranial electrical stimulation on dynamic functional connectivity in medically refractory epilepsy

    Get PDF
    ObjectiveThe objective of this study was to explore the distributed network effects of intracranial electrical stimulation in patients with medically refractory epilepsy using dynamic functional connectivity (dFC) and graph indicators.MethodsThe time-varying connectivity patterns of dFC (state-based metrics) as well as topological properties of static functional connectivity (sFC) and dFC (graph indicators) were assessed before and after the intracranial electrical stimulation. The sliding window method and k-means clustering were used for the analysis of dFC states, which were characterized by connectivity strength, occupancy rate, dwell time, and transition. Graph indicators for sFC and dFC were obtained using group statistical tests.ResultsDFCs were clustered into two connectivity configurations: a strongly connected state (state 1) and a sparsely connected state (state 2). After electrical stimulation, the dwell time and occupancy rate of state 1 decreased, while that of state 2 increased. Connectivity strengths of both state 1 and state 2 decreased. For graph indicators, the clustering coefficient, k-core, global efficiency, and local efficiency of patients showed a significant decrease, but the brain networks of patients exhibited higher modularity after electrical stimulation. Especially, for state 1, there was a significant decrease in functional connectivity strength after stimulation within and between the frontal lobe and temporary lobe, both of which are associated with the seizure onset.ConclusionOur findings demonstrated that intracranial electrical stimulation significantly changed the time-varying connectivity patterns and graph indicators of the brain in patients with medically refractory epilepsy. Specifically, the electrical stimulation decreased functional connectivity strength in both local-level and global-level networks. This might provide a mechanism of understanding for the distributed network effects of intracranial electrical stimulation and extend the knowledge of the pathophysiological network of medically refractory epilepsy

    A Novel Audiovisual P300-Speller Paradigm Based on Cross-Modal Spatial and Semantic Congruence

    Get PDF
    Objective: Although many studies have attempted to improve the performance of the visual-based P300-speller system, its performance is still not satisfactory. The current system has limitations for patients with neurodegenerative diseases, in which muscular control of the eyes may be impaired or deteriorate over time. Some studies have shown that the audiovisual stimuli with spatial and semantic congruence elicited larger event-related potential (ERP) amplitudes than do unimodal visual stimuli. Therefore, this study proposed a novel multisensory P300-speller based on audiovisual spatial and semantic congruence. Methods: We designed a novel audiovisual P300-speller paradigm (AV spelling paradigm) in which the pronunciation and visual presentation of characters were matched in spatial position and semantics. We analyzed the ERP waveforms elicited in the AV spelling paradigm and visual-based spelling paradigm (V spelling paradigm) and compared the classification accuracies between these two paradigms. Results: ERP analysis revealed significant differences in ERP amplitudes between the two paradigms in the following areas (AV \u3e V): the frontal area at 60–140 ms, frontal–central–parietal area at 360–460 ms, frontal area at 700–800 ms, right temporal area at 380–480 and 700–780 ms, and left temporal area at 500–780 ms. Offline classification results showed that the accuracies were significantly higher in the AV spelling paradigm than in the V spelling paradigm after superposing 1, 2, 5, 6, 9, and 10 times (P \u3c 0.05), and there were trends toward improvement in the accuracies at superposing 3, 4, 7, and 8 times (P = 0.06). Similar results were found for information transfer rate between V and AV spelling paradigms at 1, 2, 5, 6, and 10 superposition times (P \u3c 0.05). Significance: The proposed audiovisual P300-speller paradigm significantly improved the classification accuracies compared with the visual-based P300-speller paradigm. Our novel paradigm combines spatial and semantic features of two sensory modalities, and the present findings provide valuable insights into the development of multimodal ERP-based BCI paradigms
    • …
    corecore