501 research outputs found
The effect of laser shock peening on hardness and microstructure in a welded marine steel
Residual stress is generally considered as the main criterion in laser shock peening for enhancement of fatigue life. However, changes in material hardness, microstructure and surface roughness can also affect component performance. These three aspects are investigated in this paper for welded marine steel samples subjected to laser peening. After laser peening an increase in hardness was seen across the weld and parent metal, with the local hardness dependent upon the initial hardness of the region before peening. The increase was relatively higher for the weld metal which had lower initial hardness. The local surface displacement profiles reflected the number of laser peening layers applied, and the peening also affected the distortion of the specimen after welding
Bulk experimental evidence of half-metallic ferromagnetism in doped manganites
We report precise measurements and quantitative data analysis on the
low-temperature resistivity of several ferromagnetic manganite films. We
clearly show that there exists a T^{4.5} term in low-temperature resistivity,
and that this term is in quantitative agreement with the quantum theory of
two-magnon scattering for half metallic ferromagnets. Our present results
provide the first bulk experimental evidence of half-metallic ferromagnetism in
doped manganites.Comment: 4 pages, 4 figure
Charged black holes in quadratic gravity
Iterative solutions to fourth-order gravity describing static and
electrically charged black holes are constructed. Obtained solutions are
parametrized by two integration constants which are related to the electric
charge and the exact location of the event horizon. Special emphasis is put on
the extremal black holes. It is explicitly demonstrated that in the extremal
limit, the exact location of the (degenerate) event horizon is given by \rp =
|e|. Similarly to the classical Reissner-Nordstr\"om solution, the
near-horizon geometry of the charged black holes in quadratic gravity, when
expanded into the whole manifold, is simply that of Bertotti and Robinson.
Similar considerations have been carried out for the boundary conditions of
second type which employ the electric charge and the mass of the system as seen
by a distant observer. The relations between results obtained within the
framework of each method are briefly discussed
Probing unparticle theory via lepton flavor violating process at BESIII
The lepton flavor violating process serves as an
ideal place to probe the unparticle theory. Such process can only occur at loop
level in the Standard model (SM), so that should be very suppressed, by
contrast in unparticle scenario, it happens at tree level and its contribution
may be sizable for practical measurement. Moreover, the BESIII will offer the
largest database on which makes more accurate measurements possible.
Furthermore, for such purely leptonic decays background is relatively low and
signal would be cleaner. Our work carefully investigates the possibility of
observing such processes from both theoretical and experimental aspects.Comment: 11 pages, 2 figures, revised version for publicatio
Structural and biological identification of residues on the surface of NS3 helicase required for optimal replication of the hepatitis C virus
The hepatitis C virus (HCV) nonstructural protein 3 (NS3) is a multifunctional enzyme with serine protease and DEXH/D-box helicase domains. A crystal structure of the NS3 helicase domain (NS3h) was generated in the presence of a single-stranded oligonucleotide long enough to accommodate binding of two molecules of enzyme. Several amino acid residues at the interface of the two NS3h molecules were identified that appear to mediate a proteinprotein interaction between domains 2 and 3 of adjacent molecules. Mutations were introduced into domain 3 to disrupt the putative interface and subsequently examined using an HCV subgenomic replicon, resulting in significant reduction in replication capacity. The mutations in domain 3 were then examined using recombinant NS3h in biochemical assays. The mutant enzyme showed RNA binding and RNA-stimulated ATPase activity that mirrored wild type NS3h. In DNA unwinding assays under single turnover conditions, the mutant NS3h exhibited a similar unwinding rate and only ∼2-fold lower processivity than wild type NS3h. Overall biochemical activities of the mutant NS3h were similar to the wild type enzyme, which was not reflective of the large reduction in HCV replicative capacity observed in the biological experiment. Hence, the biological results suggest that the known biochemical properties associated with the helicase activity of NS3h do not reveal all of the likely biological roles of NS3 during HCV replication. Domain 3 of NS3 is implicated in protein-protein interactions that are necessary for HCV replication. © 2006 by The American Society for Biochemistry and Molecular Biology, Inc
Grain boundary effects on magnetotransport in bi-epitaxial films of LaSrMnO
The low field magnetotransport of LaSrMnO (LSMO) films
grown on SrTiO substrates has been investigated. A high qualtity LSMO film
exhibits anisotropic magnetoresistance (AMR) and a peak in the
magnetoresistance close to the Curie temperature of LSMO. Bi-epitaxial films
prepared using a seed layer of MgO and a buffer layer of CeO display a
resistance dominated by grain boundaries. One film was prepared with seed and
buffer layers intact, while a second sample was prepared as a 2D square array
of grain boundaries. These films exhibit i) a low temperature tail in the low
field magnetoresistance; ii) a magnetoconductance with a constant high field
slope; and iii) a comparably large AMR effect. A model based on a two-step
tunneling process, including spin-flip tunneling, is discussed and shown to be
consistent with the experimental findings of the bi-epitaxial films.Comment: REVTeX style; 14 pages, 9 figures. Figure 1 included in jpeg format
(zdf1.jpg); the eps was huge. Accepted to Phys. Rev.
\psi(2S) Decays into \J plus Two Photons
Using \gamma \gamma J/\psi, J/\psi \ra e^+ e^- and events
from a sample of \psip decays collected with the BESII
detector, the branching fractions for \psip\ra \pi^0\J, \eta\J, and
\psi(2S)\ar\gamma\chi_{c1},\gamma\chi_{c2}\ar\gamma\gamma\jpsi are measured
to be B(\psip\ra \pi^0\J) = (1.43\pm0.14\pm0.13)\times 10^{-3}, B(\psip\ra
\eta\J) = (2.98\pm0.09\pm0.23)%,
B(\psi(2S)\ar\gamma\chi_{c1}\ar\gamma\gamma\jpsi) = (2.81\pm0.05\pm 0.23)%,
and B(\psi(2S)\ar\gamma\chi_{c2}\ar\gamma\gamma\jpsi) = (1.62\pm0.04\pm
0.12)%.Comment: 7 pages, 6 figures. submitted to Phys. Rev.
Detecting change via competence model
In real world applications, interested concepts are more likely to change rather than remain stable, which is known as concept drift. This situation causes problems on predictions for many learning algorithms including case-base reasoning (CBR). When learning under concept drift, a critical issue is to identify and determine "when" and "how" the concept changes. In this paper, we developed a competence-based empirical distance between case chunks and then proposed a change detection method based on it. As a main contribution of our work, the change detection method provides an approach to measure the distribution change of cases of an infinite domain through finite samples and requires no prior knowledge about the case distribution, which makes it more practical in real world applications. Also, different from many other change detection methods, we not only detect the change of concepts but also quantify and describe this change. © 2010 Springer-Verlag
A Measurement of Psi(2S) Resonance Parameters
Cross sections for e+e- to hadons, pi+pi- J/Psi, and mu+mu- have been
measured in the vicinity of the Psi(2S) resonance using the BESII detector
operated at the BEPC. The Psi(2S) total width; partial widths to hadrons,
pi+pi- J/Psi, muons; and corresponding branching fractions have been determined
to be Gamma(total)= (264+-27) keV; Gamma(hadron)= (258+-26) keV, Gamma(mu)=
(2.44+-0.21) keV, and Gamma(pi+pi- J/Psi)= (85+-8.7) keV; and Br(hadron)=
(97.79+-0.15)%, Br(pi+pi- J/Psi)= (32+-1.4)%, Br(mu)= (0.93+-0.08)%,
respectively.Comment: 8 pages, 6 figure
- …