106,072 research outputs found

    A dubiety-determining based model for database cumulated anomaly intrusion

    Get PDF
    The concept of Cumulated Anomaly (CA), which describes a new type of database anomalies, is addressed. A typical CA intrusion is that when a user who is authorized to modify data records under certain constraints deliberately hides his/her intentions to change data beyond constraints in different operations and different transactions. It happens when some appearing to be authorized and normal transactions lead to certain accumulated results out of given thresholds. The existing intrusion techniques are unable to deal with CAs. This paper proposes a detection model, Dubiety-Determining Model (DDM), for Cumulated Anomaly. This model is mainly based on statistical theories and fuzzy set theories. It measures the dubiety degree, which is presented by a real number between 0 and 1, for each database transaction, to show the likelihood of a transaction to be intrusive. The algorithms used in the DDM are introduced. A DDM-based software architecture has been designed and implemented for monitoring database transactions. The experimental results show that the DDM method is feasible and effective

    Statistical and fuzzy approach for database security

    Get PDF
    A new type of database anomaly is described by addressing the concept of Cumulated Anomaly in this paper. Dubiety-Determining Model (DDM), which is a detection model basing on statistical and fuzzy set theories for Cumulated Anomaly, is proposed. DDM can measure the dubiety degree of each database transaction quantitatively. Software system architecture to support the DDM for monitoring database transactions is designed. We also implemented the system and tested it. Our experimental results show that the DDM method is feasible and effective

    Ionized Gas in Damped Lyman Alpha Protogalaxies: II. Comparison Between Models and the Kinematic Data

    Full text link
    We test semi-analytic models for galaxy formation with accurate kinematic data of damped Lyman alpha protogalaxies (DLAs) presented in the companion paper I. The models envisage centrifugally supported exponential disks at the centers of dark matter halos which are filled with ionized gas undergoing radial infall to the disks. The halo masses are drawn from cross-section weighted mass distributions predicted by CDM cosmogonies, or by the null hypothesis (TF model) that the dark matter mass distribution has not evolved since z ~ 3. In our models, C IV absorption lines detected in DLAs arise in infalling ionized clouds while the low-ion absorption lines arise from neutral gas in the disks. Using Monte Carlo methods we find: (a) The CDM models are incompatible with the low-ion statistics at more than 99% confidence whereas some TF models cannot be excluded at more than 88% confidence. (b) Both CDM and TF models agree with the observed distribution of C IV velocity widths. (c) The CDM models generate differences between the mean velocities of C IV and low ion profiles in agreement with the data, while the TF model produces differences in the means that are too large. (d) Both CDM and TF models produce ratios of C IV to low-ion velocity widths that are too large. (e) Both CDM and TF models generate C IV versus low-ion cross-correlation functions incompatible with the data. While it is possible to select model parameters resulting in consistency with the data, the disk-halo configuration assumed in both cosmogonies still does not produce significant overlap in velocity space between C IV low-ion velocity profiles. We conjecture that including angular momentum of the infalling clouds will increase the overlap between C IV and low-ion profiles.Comment: 18 pages, 12 Figures, Accepted for publication in the Dec. 20 issue of the Astrophysical Journa

    From Electrons to Finite Elements: A Concurrent Multiscale Approach for Metals

    Full text link
    We present a multiscale modeling approach that concurrently couples quantum mechanical, classical atomistic and continuum mechanics simulations in a unified fashion for metals. This approach is particular useful for systems where chemical interactions in a small region can affect the macroscopic properties of a material. We discuss how the coupling across different scales can be accomplished efficiently, and we apply the method to multiscale simulations of an edge dislocation in aluminum in the absence and presence of H impurities.Comment: 4 page

    PT-symmetric sine-Gordon breathers

    Get PDF
    In this work, we explore a prototypical example of a genuine continuum breather (i.e., not a standing wave) and the conditions under which it can persist in a PT\mathcal{P T}-symmetric medium. As our model of interest, we will explore the sine-Gordon equation in the presence of a PT\mathcal{P T}- symmetric perturbation. Our main finding is that the breather of the sine-Gordon model will only persist at the interface between gain and loss that PT\mathcal{P T}-symmetry imposes but will not be preserved if centered at the lossy or at the gain side. The latter dynamics is found to be interesting in its own right giving rise to kink-antikink pairs on the gain side and complete decay of the breather on the lossy side. Lastly, the stability of the breathers centered at the interface is studied. As may be anticipated on the basis of their "delicate" existence properties such breathers are found to be destabilized through a Hopf bifurcation in the corresponding Floquet analysis
    corecore