89,309 research outputs found

    Sensitivity-analysis method for inverse simulation application

    Get PDF
    An important criticism of traditional methods of inverse simulation that are based on the Newton–Raphson algorithm is that they suffer from numerical problems. In this paper these problems are discussed and a new method based on sensitivity-analysis theory is developed and evaluated. The Jacobian matrix may be calculated by solving a sensitivity equation and this has advantages over the approximation methods that are usually applied when the derivatives of output variables with respect to inputs cannot be found analytically. The methodology also overcomes problems of input-output redundancy that arise in the traditional approaches to inverse simulation. The sensitivity- analysis approach makes full use of information within the time interval over which key quantities are compared, such as the difference between calculated values and the given ideal maneuver after each integration step. Applications to nonlinear HS125 aircraft and Lynx helicopter models show that, for this sensitivity-analysis method, more stable and accurate results are obtained than from use of the traditional Newton–Raphson approach

    Symmetry protected fractional Chern insulators and fractional topological insulators

    Full text link
    In this paper we construct fully symmetric wavefunctions for the spin-polarized fractional Chern insulators (FCI) and time-reversal-invariant fractional topological insulators (FTI) in two dimensions using the parton approach. We show that the lattice symmetry gives rise to many different FCI and FTI phases even with the same filling fraction ν\nu (and the same quantized Hall conductance σxy\sigma_{xy} in FCI case). They have different symmetry-protected topological orders, which are characterized by different projective symmetry groups. We mainly focus on FCI phases which are realized in a partially filled band with Chern number one. The low-energy gauge groups of a generic σxy=1/m⋅e2/h\sigma_{xy}=1/m\cdot e^2/h FCI wavefunctions can be either SU(m)SU(m) or the discrete group ZmZ_m, and in the latter case the associated low-energy physics are described by Chern-Simons-Higgs theories. We use our construction to compute the ground state degeneracy. Examples of FCI/FTI wavefunctions on honeycomb lattice and checkerboard lattice are explicitly given. Possible non-Abelian FCI phases which may be realized in a partially filled band with Chern number two are discussed. Generic FTI wavefunctions in the absence of spin conservation are also presented whose low-energy gauge groups can be either SU(m)×SU(m)SU(m)\times SU(m) or Zm×ZmZ_m\times Z_m. The constructed wavefunctions also set up the framework for future variational Monte Carlo simulations.Comment: 24 pages, 13 figures, published versio
    • …
    corecore