7 research outputs found
Predictability of evolutionary trajectories in fitness landscapes
Experimental studies on enzyme evolution show that only a small fraction of
all possible mutation trajectories are accessible to evolution. However, these
experiments deal with individual enzymes and explore a tiny part of the fitness
landscape. We report an exhaustive analysis of fitness landscapes constructed
with an off-lattice model of protein folding where fitness is equated with
robustness to misfolding. This model mimics the essential features of the
interactions between amino acids, is consistent with the key paradigms of
protein folding and reproduces the universal distribution of evolutionary rates
among orthologous proteins. We introduce mean path divergence as a quantitative
measure of the degree to which the starting and ending points determine the
path of evolution in fitness landscapes. Global measures of landscape roughness
are good predictors of path divergence in all studied landscapes: the mean path
divergence is greater in smooth landscapes than in rough ones. The
model-derived and experimental landscapes are significantly smoother than
random landscapes and resemble additive landscapes perturbed with moderate
amounts of noise; thus, these landscapes are substantially robust to mutation.
The model landscapes show a deficit of suboptimal peaks even compared with
noisy additive landscapes with similar overall roughness. We suggest that
smoothness and the substantial deficit of peaks in the fitness landscapes of
protein evolution are fundamental consequences of the physics of protein
folding.Comment: 14 pages, 7 figure
Evolution of genes and genomes on the Drosophila phylogeny
Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae, persimilis, willistoni, mojavensis, virilis and grimshawi), illustrate how rates and patterns of sequence divergence across taxa can illuminate evolutionary processes on a genomic scale. These genome sequences augment the formidable genetic tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution. Despite remarkable similarities among these Drosophila species, we identified many putatively non-neutral changes in protein-coding genes, non-coding RNA genes, and cis-regulatory regions. These may prove to underlie differences in the ecology and behaviour of these diverse species
Evolution of genes and genomes on the Drosophila phylogeny
Affiliations des auteurs : cf page 216 de l'articleInternational audienceComparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae, persimilis, willistoni, mojavensis, virilis and grimshawi), illustrate how rates and patterns of sequence divergence across taxa can illuminate evolutionary processes on a genomic scale. These genome sequences augment the formidable genetic tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution. Despite remarkable similarities among these Drosophila species, we identified many putatively non-neutral changes in protein-coding genes, non-coding RNA genes, and cis-regulatory regions. These may prove to underlie differences in the ecology and behaviour of these diverse species