12 research outputs found
In Silico and In Vivo Evaluation of the Maqui Berry (Aristotelia chilensis (Mol.) Stuntz) on Biochemical Parameters and Oxidative Stress Markers in a Metabolic Syndrome Model
Metabolic syndrome (MetS) is a complex disease that includes metabolic and physiological alterations in various organs such as the heart, pancreas, liver, and brain. Reports indicate that blackberry consumption, such as maqui berry, has a beneficial effect on chronic diseases such as cardiovascular disease, obesity, and diabetes. In the present study, in vivo and in silico studies have been performed to evaluate the molecular mechanisms implied to improve the metabolic parameters of MetS. Fourteen-day administration of maqui berry reduces weight gain, blood fasting glucose, total blood cholesterol, triacylglycerides, insulin resistance, and blood pressure impairment in the diet-induced MetS model in male and female rats. In addition, in the serum of male and female rats, the administration of maqui berry (MB) improved the concentration of MDA, the activity of SOD, and the formation of carbonyls in the group subjected to the diet-induced MetS model. In silico studies revealed that delphinidin and its glycosylated derivatives could be ligands of some metabolic targets such as α-glucosidase, PPAR-α, and PPAR-γ, which are related to MetS parameters. The experimental results obtained in the study suggest that even at low systemic concentrations, anthocyanin glycosides and aglycones could simultaneously act on different targets related to MetS. Therefore, these molecules could be used as coadjuvants in pharmacological interventions or as templates for designing new multitarget molecules to manage patients with MetS.This work was submitted in partial fulfillment of the requirements for the Ph.D. degree of Emily Leonela Castillo García at Doctorado en Ciencias Biológicas y de la Salud (UAM-I). Emily Leonela Castillo García received financial support from CONACyT (785220)Peer reviewe
Chemistry, biological activities and in silico bioprospection of sterols and triterpenes from Mexican columnar Cactaceae
The Cactaceae family is an important source of triterpenes and sterols. The wide uses of those plants include food, gathering, medicinal, and live fences. Several studies have led to the isolation and characterization of many bioactive compounds. This review is focused on the chemistry and biological properties of sterols and triterpenes isolated mainly from some species with columnar and arborescent growth forms of Mexican Cactaceae. Regarding the biological properties of those compounds, apart from a few cases, their molecular mechanisms displayed are not still fully understand. To contribute to the above, computational chemistry tools have given a boost to traditional methods used in natural products research, allowing a more comprehensive exploration of chemistry and biological activities of isolated compounds and extracts. From this information an in silico bioprospection was carried out. The results suggest that sterols and triterpenoids present in Cactaceae have interesting substitution patterns that allow them to interact with some bio targets related to inflammation, metabolic diseases, and neurodegenerative processes. Thus, they should be considered as attractive leads for the development of drugs for the management of chronic degenerative diseases
In Silico Studies on Compounds Derived from <i>Calceolaria</i>: Phenylethanoid Glycosides as Potential Multitarget Inhibitors for the Development of Pesticides
An increasing occurrence of resistance in insect pests and high mammal toxicity exhibited by common pesticides increase the need for new alternative molecules. Among these alternatives, bioinsecticides are considered to be environmentally friendly and safer than synthetic insecticides. Particularly, plant extracts have shown great potential in laboratory conditions. However, the lack of studies that confirm their mechanisms of action diminishes their potential applications on a large scale. Previously, we have reported the insect growth regulator and insecticidal activities of secondary metabolites isolated from plants of the Calceolaria genus. Herein, we report an in silico study of compounds isolated from Calceolaria against acetylcholinesterase, prophenoloxidase, and ecdysone receptor. The molecular docking results are consistent with the previously reported experimental results, which were obtained during the bioevaluation of Calceolaria extracts. Among the compounds, phenylethanoid glycosides, such as verbascoside, exhibited good theoretical affinity to all the analyzed targets. In light of these results, we developed an index to evaluate potential multitarget insecticides based on docking scores
Newton's Method
Radajaxpanel1,ActiveElement,btnRADUpload
α-Glucosidase inhibitors from a mangrove associated fungus, Zasmidium sp. strain EM5-10
Abstract Background Mangroves plants and their endophytes represent a natural source of novel and bioactive compounds. In our ongoing research on mangrove endophytes from the Panamanian Pacific Coast, we have identified several bioactive endophytic fungi. From these organisms, an isolate belonging to the genus Zasmidium (Mycosphaerellaceae) showed 91.3% of inhibition against α-glucosidase enzyme in vitro. Results Zasmidium sp. strain EM5-10 was isolated from mature leaves of Laguncularia racemosa, and its crude extract showed good inhibition against α-glucosidase enzyme (91.3% of inhibition). Bioassay-guided fractionation of the crude extract led to obtaining two active fractions: L (tripalmitin) and M (Fungal Tryglicerides Mixture). Tripalmitin (3.75 µM) showed better inhibitory activity than acarbose (positive control, IC50 217.71 µM). Kinetic analysis established that tripalmitin acted as a mixed inhibitor. Molecular docking and molecular dynamics simulations predicted that tripalmitin binds at the same site as acarbose and also to an allosteric site in the human intestinal α-glucosidase (PDB: 3TOP). Conclusions Zasmidium sp. strain EM5-10 represents a new source of bioactive substances that could possess beneficial properties for human health
In Silico Study of Polyunsaturated Fatty Acids as Potential SARS-CoV-2 Spike Protein Closed Conformation Stabilizers: Epidemiological and Computational Approaches
SARS-CoV-2 infects host cells by interacting its spike protein with surface angiotensin-converting enzyme 2 (ACE2) receptors, expressed in lung and other cell types. Although several risk factors could explain why some countries have lower incidence and fatality rates than others, environmental factors such as diet should be considered. It has been described that countries with high polyunsaturated fatty acid (PUFA) intake have a lower number of COVID-19 victims and a higher rate of recovery from the disease. Moreover, it was found that linoleic acid, an omega-6 PUFA, could stabilize the spike protein in a closed conformation, blocking its interaction with ACE2. These facts prompted us to perform in silico simulations to determine if other PUFA could also stabilize the closed conformation of spike protein and potentially lead to a reduction in SARS-CoV-2 infection. We found that: (a) countries whose source of omega-3 is from marine origin have lower fatality rates; and (b) like linoleic acid, omega-3 PUFA could also bind to the closed conformation of spike protein and therefore, could help reduce COVID-19 complications by reducing viral entrance to cells, in addition to their known anti-inflammatory effects
Synthesis, In Silico, and In Vitro Evaluation of Long Chain Alkyl Amides from 2-Amino-4-Quinolone Derivatives as Biofilm Inhibitors
Infection from multidrug resistant bacteria has become a growing health concern worldwide, increasing the need for developing new antibacterial agents. Among the strategies that have been studied, biofilm inhibitors have acquired relevance as a potential source of drugs that could act as a complement for current and new antibacterial therapies. Based on the structure of 2-alkyl-3-hydroxy-4-quinolone and N-acylhomoserine lactone, molecules that act as mediators of quorum sensing and biofilm formation in Pseudomonas aeruginosa, we designed, prepared, and evaluated the biofilm inhibition properties of long chain amide derivatives of 2-amino-4-quinolone in Staphylococcus aureus and P. aeruginosa. All compounds had higher biofilm inhibition activity in P. aeruginosa than in S. aureus. Particularly, compounds with an alkyl chain of 12 carbons exhibited the highest inhibition of biofilm formation. Docking scores and molecular dynamics simulations of the complexes of the tested compounds within the active sites of proteins related to quorum sensing had good correlation with the experimental results, suggesting the diminution of biofilm formation induced by these compounds could be related to the inhibition of these proteins
In Silico-Based Design and In Vivo Evaluation of an Anthranilic Acid Derivative as a Multitarget Drug in a Diet-Induced Metabolic Syndrome Model
Metabolic syndrome (MetS) is a complex disease that affects almost a quarter of the world’s adult population. In MetS, diabetes, obesity, hyperglycemia, high cholesterol, and high blood pressure are the most common disorders. Polypharmacy is the most used strategy for managing conditions related to MetS, but it has drawbacks such as low medication adherence. Multitarget ligands have been proposed as an interesting approach to developing drugs to treat complex diseases. However, suitable preclinical models that allow their evaluation in a context closer to a clinical situation of a complex disease are needed. From molecular docking studies, compound 1b, a 5-aminoanthranilic acid derivative substituted with 4′-trifluoromethylbenzylamino and 3′,4′-dimethoxybenzamide moieties, was identified as a potential multitarget drug, as it showed high in silico affinity against targets related to MetS, including PPAR-α, PPAR-γ, and HMG-CoA reductase. It was evaluated in a diet-induced MetS rat model and simultaneously lowered blood pressure, glucose, total cholesterol, and triglyceride levels after a 14-day treatment. No toxicity events were observed during an acute lethal dose evaluation test at 1500 mg/kg. Hence, the diet-induced MetS model is suitable for evaluating treatments for MetS, and compound 1b is an attractive starting point for developing multitarget drugs
Does the Fetus Limit Antibiotic Treatment in Pregnant Patients with COVID-19?
During pregnancy, there is a state of immune tolerance that predisposes them to viral infection, causing maternal-fetal vulnerability to the adverse effects of COVID-19. Bacterial coinfections significantly increase the mortality rate for COVID-19. However, it is known that all drugs, including antibiotics, will enter the fetal circulation in a variable degree despite the role of the placenta as a protective barrier and can cause teratogenesis or other malformations depending on the timing of exposure to the drug. Also, it is important to consider the impact of the indiscriminate use of antibiotics during pregnancy can alter both the maternal and fetal-neonatal microbiota, generating future repercussions in both. In the present study, the literature for treating bacterial coinfections in pregnant women with COVID-19 is reviewed. In turn, we present the findings in 50 pregnant women hospitalized diagnosed with SARS-CoV-2 without previous treatment with antibiotics; moreover, a bacteriological culture of sample types was performed. Seven pregnant women had coinfection with Staphylococcus haemolyticus, Staphylococcus epidermidis, Streptococcus agalactiae, Escherichia coli ESBL +, biotype 1 and 2, Acinetobacter jahnsonii, Enterococcus faecium, and Clostridium difficile. When performing the antibiogram, resistance to multiple drugs was found, such as macrolides, aminoglycosides, sulfa, dihydrofolate reductase inhibitors, beta-lactams, etc. The purpose of this study was to generate more scientific evidence on the better use of antibiotics in these patients. Because of this, it is important to perform an antibiogram to prevent abuse of empirical antibiotic treatment with antibiotics in pregnant women diagnosed with SARS-CoV-2