42 research outputs found

    Optimal Mix of Urban Public Services; the Case of Three Indian Cities

    No full text
    The innate immune system differentially recognizes Candida albicans yeast and hyphae. It is not clear how the innate immune system effectively discriminates between yeast and hyphal forms of C. albicans. Glucans are major components of the fungal cell wall and key fungal pathogen-associated molecular patterns. C. albicans yeast glucan has been characterized; however, little is known about glucan structure in C. albicans hyphae. Using an extraction procedure that minimizes degradation of the native structure, we extracted glucans from C. albicans hyphal cell walls. (1)H NMR data analysis revealed that, when compared with reference (1-->3,1-->6) beta-linked glucans and C. albicans yeast glucan, hyphal glucan has a unique cyclical or "closed chain" structure that is not found in yeast glucan. GC/MS analyses showed a high abundance of 3- and 6-linked glucose units when compared with yeast beta-glucan. In addition to the expected (1-->3), (1-->6), and 3,6 linkages, we also identified a 2,3 linkage that has not been reported previously in C. albicans. Hyphal glucan induced robust immune responses in human peripheral blood mononuclear cells and macrophages via a Dectin-1-dependent mechanism. In contrast, C. albicans yeast glucan was a much less potent stimulus. We also demonstrated the capacity of C. albicans hyphal glucan, but not yeast glucan, to induce IL-1beta processing and secretion. This finding provides important evidence for understanding the immune discrimination between colonization and invasion at the mucosal level. When taken together, these data provide a structural basis for differential innate immune recognition of C. albicans yeast versus hyphae

    Fine litter accumulation in Central Amazonian Tropical Rainforest canopy Acúmulo de liteira fina no dossel de uma Floresta Tropical na Amazônia Central

    Get PDF
    Fine litter dynamics within the canopy differ from litter dynamics on the forest floor for reasons such as differences in microclimate, substrate, disturbance level, stratum influence and decomposition rates. This study is the first attempt to quantify the fine litter accumulated in the canopy of Central Amazonian forests. We compared the canopy litter accumulation to fine litter-layer on forest floor and to other forests and also investigated which were the mostly accumulated litter omponents. We found that Central Amazonian Rainforest intercepts greater fine litter in the canopy (294 g.m-2) compared to other forest formations with higher winds speed as in a Costa Rican Cloud Forest (170 g.m-2). The mean canopy fine litter accumulated at the end of the dry season was less than a half of that on soil surface (833 g.m-2) and the fine wood component dominates the canopy samplings (174 g.m-2) while leafy component predominate on soil surface litter (353 g.m-2).<br>A dinâmica da liteira fina no dossel difere da dinâmica no chão da floresta por razões como diferenças no microclima, tipo de substrato, taxas de decomposição, distúrbios e influência dos estratos. Esta é a primeira tentativa de quantificar a liteira fina acumulada no dossel das florestas da Amazônia Central. Comparamos o acúmulo da liteira no dossel com a camada de liteira do chão da floresta e com outros tipos de florestas e investigamos quais componentes da liteira acumularam em maiores quantidades. A floresta estudada na Amazônia Central interceptou uma maior quantidade de liteira no dossel (294 g.m-2) do que outras florestas com maior influência dos ventos, como na Costa Rica (170 g.m-2). A média de liteira no dossel no fim da estação seca foi menos da metade da acumulada sobre o solo (833 g.m-2). Os galhos finos dominaram nas amostras do dossel (174 g.m-2) enquanto as folhas predominaram na liteira sobre o solo (353 g.m-2)
    corecore