12 research outputs found

    Bone-induced chondroinduction in sheep Jamshidi biopsy defects with and without treatment by subchondral chitosan-blood implant: 1 day, 3 week, and 3 month repair

    No full text
    OBJECTIVE: Delivery of chitosan to subchondral bone is a novel approach for augmented marrow stimulation. We evaluated the effect of 3 presolidified chitosan-blood implant formulations on osteochondral repair progression compared with untreated defects. DESIGN: In N = 5 adult sheep, six 2-mm diameter Jamshidi biopsy holes were created bilaterally in the medial femoral condyle and treated with presolidified chitosan-blood implant with fluorescent chitosan tracer (10 kDa, 40 kDa, or 150k Da chitosan, left knee) or left to bleed (untreated, right knee). Implant residency and osteochondral repair were assessed at 1 day (N = 1), 3 weeks (N = 2), or 3 months (N = 2) postoperative using fluorescence microscopy, histomorphometry, stereology, and micro–computed tomography. RESULTS: Chitosan implants were retained in 89% of treated Jamshidi holes up to 3 weeks postoperative. At 3 weeks, biopsy sites were variably covered by cartilage flow, and most bone holes contained cartilage flow fragments and heterogeneous granulation tissues with sparse leukocytes, stromal cells, and occasional adipocytes (volume density 1% to 3%). After 3 months of repair, most Jamshidi bone holes were deeper, remodeling at the edges, filled with angiogenic granulation tissue, and lined with variably sized chondrogenic foci fused to bone trabeculae or actively repairing bone plate. The 150-kDa chitosan implant elicited more subchondral cartilage formation compared with 40-kDa chitosan-treated and control defects (P < 0.05, N = 4). Treated defects contained more mineralized repair tissue than control defects at 3 months (P < 0.05, N = 12). CONCLUSION: Bone plate–induced chondroinduction is an articular cartilage repair mechanism. Jamshidi biopsy repair takes longer than 3 months and can be influenced by subchondral chitosan-blood implant

    Disability-adjusted life years (DALYs) due to the direct health impact of COVID-19 in India, 2020

    No full text
    COVID-19 has affected all countries. Its containment represents a unique challenge for India due to a large population (>_1.38 billion) across a wide range of population densities. Assessment of the COVID-19 disease burden is required to put the disease impact into context and support future pandemic policy development. Here, we present the national-level burden of COVID-19 in India in 2020 that accounts for differences across urban and rural regions and across age groups. Input data were collected from official records or published literature. The proportion of excess COVID-19 deaths was estimated using the Institute for Health Metrics and Evaluation, Washington data. Disability-adjusted life years (DALY) due to COVID-19 were estimated in the Indian population in 2020, comprised of years of life lost (YLL) and years lived with disability (YLD). YLL was estimated by multiplying the number of deaths due to COVID-19 by the residual standard life expectancy at the age of death due to the disease. YLD was calculated as a product of the number of incident cases of COVID-19, disease duration and disability weight. Scenario analyses were conducted to account for excess deaths not recorded in the official data and for reported COVID-19 deaths. The direct impact of COVID-19 in 2020 in India was responsible for 14,100,422 (95% uncertainty interval [UI] 14,030,129-14,213,231) DALYs, consisting of 99.2% (95% UI 98.47-99.64%) YLLs and 0.80% (95% UI 0.36-1.53) YLDs. DALYs were higher in urban (56%; 95% UI 56-57%) than rural areas (44%; 95% UI 43.4-43.6) and in men (64%) than women (36%). In absolute terms, the highest DALYs occurred in the 51-60-year-old age group (28%) but the highest DALYs per 100,000 persons were estimated for the 71-80 years old age group (5481; 95% UI 5464-5500 years). There were 4,815,908 (95% UI 4,760,908-4,924,307) DALYs after considering reported COVID-19 deaths only. The DALY estimations have direct and immediate implications not only for public policy in India, but also internationally given that India represents one sixth of the world's population

    Disability-adjusted life years (DALYs) due to the direct health impact of COVID-19 in India, 2020

    No full text
    COVID-19 has affected all countries. Its containment represents a unique challenge for India due to a large population (>1.38 billion) across a wide range of population densities. Assessment of the COVID-19 disease burden is required to put the disease impact into context and support future pandemic policy development. Here, we present the national-level burden of COVID-19 in India in 2020 that accounts for differences across urban and rural regions and across age groups. Disability-adjusted life years (DALY) due to COVID-19 were estimated in the Indian population in 2020, comprised of years of life lost (YLL) and years lived with disability (YLD). Scenario analyses were conducted to account for excess deaths not recorded in the official data and for reported COVID-19 deaths. The direct impact of COVID-19 in 2020 in India was responsible for 14,106,060 (95% uncertainty interval [UI] 14,030,129–14,213,231) DALYs, consisting of 99.2% (95% UI 98.47–99.64%) YLLs and 0.80% (95% UI 0.36–1.53) YLDs. DALYs were higher in urban (56%; 95% UI 56–57%) than rural areas (44%; 95% UI 43.4–43.6) and in males (64%) than females (36%). In absolute terms, the highest DALYs occurred in the 51–60-year-old age group (28%) but the highest DALYs per 100,000 persons were estimated for the 71-80 year old age group (5,481; 95% UI 5,464–5,500 years). There were 4,823,791 (95% UI 4,760,908–4,924,307) DALYs after considering reported COVID-19 deaths only. The DALY estimations have direct and immediate implications not only for public policy in India, but also internationally given that India represents one sixth of the world’s population

    Public health interventions slowed but did not halt the spread of COVID-19 in India

    No full text
    The government of India implemented social distancing interventions to contain the COVID-19 epidemic. However, effects of these interventions on epidemic dynamics are yet to be understood. Rates of laboratory-confirmed COVID-19 infections per day and effective reproduction number (Rt ) were estimated for 7 periods (Pre-lockdown, Lockdown Phases 1 to 4 and Unlock 1-2) according to nationally implemented interventions with phased relaxation. Adoption of these interventions was estimated using Google mobility data. Estimates at the national level and for 12 Indian states most affected by COVID-19 are presented. Daily case rates ranged from 0·03 to 285.60/10 million people across 7 discrete periods in India. From 18 May to 31 July 2020, the NCT of Delhi had the highest case rate (999/10 million people/day), whereas Madhya Pradesh had the lowest (49/10 million/day). Average Rt was 1.99 (95% CI 1.93-2.06) and 1.39 (95% CI 1.38-1.40) for the entirety of India during the period from 22 March 2020 to 17 May 2020 and from 18 May 2020 to 31 July 2020, respectively. Median mobility in India decreased in all contact domains during the period from 22 March 2020 to 17 May 2020, with the lowest being 21% in retail/recreation, except home which increased to 129% compared to the 100% baseline value. Median mobility in the 'Grocery and Pharmacy' returned to levels observed before 22 March 2020 in Unlock 1 and 2 and the enhanced mobility in the Pharmacy sector needs to be investigated. The Indian government imposed strict contact mitigation, followed by a phased relaxation, which slowed the spread of COVID-19 epidemic progression in India. The identified daily COVID-19 case rates and Rt will aid national and state governments in formulating ongoing COVID-19 containment plans. Furthermore, these findings may inform COVID-19 public health policy in developing countries with similar settings to India

    Minimal sufficient balance randomization for sequential randomized controlled trial designs: results from the ESCAPE trial

    No full text
    Abstract Background We describe the implementation of minimal sufficient balance randomization, a covariate-adaptive randomization technique, used for the “Endovascular treatment for Small Core and Anterior circulation Proximal occlusion with Emphasis on minimizing CT to recanalization times” (ESCAPE) trial. Methods The ESCAPE trial is a prospective, multicenter, randomized clinical trial that enrolled subjects with the following main inclusion criteria: less than 12 h from symptom onset, age 18 years or older, baseline NIHSS score > 5, ASPECTS score > 5 and computed tomography angiography (CTA) evidence of carotid T/L or M1-segment middle cerebral artery (MCA) occlusion, and at least moderate collaterals by CTA. Patients were randomized using a real-time, dynamic, Internet-based, minimal sufficient balance randomization method that balanced the study arms with respect to baseline covariates including age, sex, baseline NIHSS score, site of arterial occlusion, baseline ASPECTS score and treatment with intravenously administered alteplase. Results Permutation-based tests of group differences confirmed group balance across several baseline covariates including sex (p = 1.00), baseline NIHSS score (p = 0.95), site of arterial occlusion (p = 1.00), baseline ASPECTS score (p = 0.28), treatment with intravenously administered alteplase (p = 0.31), and age (p = 0.67). Conclusion Results from the ESCAPE trial demonstrate the feasibility and the benefit of this covariate adaptive randomization scheme in small-sample trials and for data monitoring endeavors. Trial registration ESCAPE trial – NCT01778335 – at www.clinicaltrials.gov . Registered on 29 January 2013

    Meta-analysis and adjusted estimation of COVID-19 case fatality risk in India and its association with the underlying comorbidities

    No full text
    Management of coronavirus disease 2019 (COVID-19) in India is a top government priority. However, there is a lack of COVID-19 adjusted case fatality risk (aCFR) estimates and information on states with high aCFR. Data on COVID-19 cases and deaths in the first pandemic wave and 17 state-specific geodemographic, socio-economic, health and comorbidity-related factors were collected. State-specific aCFRs were estimated, using a 13-day lag for fatality. To estimate country-level aCFR in the first wave, state estimates were meta-analysed based on inverse-variance weighting and aCFR as either a fixed- or random-effect. Multiple correspondence analyses, followed by univariable logistic regression, were conducted to understand the association between aCFR and geodemographic, health and social indicators. Based on health indicators, states likely to report a higher aCFR were identified. Using random- and fixed-effects models, cumulative aCFRs in the first pandemic wave on 27 July 2020 in India were 1.42% (95% CI 1.19%–1.70%) and 2.97% (95% CI 2.94%–3.00%), respectively. At the end of the first wave, as of 15 February 2021, a cumulative aCFR of 1.18% (95% CI 0.99%–1.41%) using random and 1.64% (95% CI 1.64%–1.65%) using fixed-effects models was estimated. Based on high heterogeneity among states, we inferred that the random-effects model likely provided more accurate estimates of the aCFR for India. The aCFR was grouped with the incidence of diabetes, hypertension, cardiovascular diseases and acute respiratory infections in the first and second dimensions of multiple correspondence analyses. Univariable logistic regression confirmed associations between the aCFR and the proportion of urban population, and between aCFR and the number of persons diagnosed with diabetes, hypertension, cardiovascular diseases and stroke per 10,000 population that had visited NCD (Non-communicable disease) clinics. Incidence of pneumonia was also associated with COVID-19 aCFR. Based on predictor variables, we categorised 10, 17 and one Indian state(s) expected to have a high, medium and low aCFR risk, respectively. The current study demonstrated the value of using meta-analysis to estimate aCFR. To decrease COVID-19 associated fatalities, states estimated to have a high aCFR must take steps to reduce co-morbidities

    Analysis of Workflow and Time to Treatment on Thrombectomy Outcome in the Endovascular Treatment for Small Core and Proximal Occlusion Ischemic Stroke (ESCAPE) Randomized, Controlled Trial.

    No full text
    BACKGROUND: The Endovascular Treatment for Small Core and Proximal Occlusion Ischemic Stroke (ESCAPE) trial used innovative imaging and aggressive target time metrics to demonstrate the benefit of endovascular treatment in patients with acute ischemic stroke. We analyze the impact of time on clinical outcome and the effect of patient, hospital, and health system characteristics on workflow within the trial. METHODS AND RESULTS: Relationship between outcome (modified Rankin Scale) and interval times was modeled by using logistic regression. Association between time intervals (stroke onset to arrival in endovascular-capable hospital, to qualifying computed tomography, to groin puncture, and to reperfusion) and patient, hospital, and health system characteristics were modeled by using negative binomial regression. Every 30-minute increase in computed tomography-to-reperfusion time reduced the probability of achieving a functionally independent outcome (90-day modified Rankin Scale 0-2) by 8.3% (P=0.006). Symptom onset-to-imaging time was not associated with outcome (P\u3e0.05). Onset-to-endovascular hospital arrival time was 42% (34 minutes) longer among patients receiving intravenous alteplase at the referring hospital (drip and ship) versus direct transfer (mothership). Computed tomography-to-groin puncture time was 15% (8 minutes) shorter among patients presenting during work hours versus off hours, 41% (24 minutes) shorter in drip-ship patients versus mothership, and 43% (22 minutes) longer when general anesthesia was administered. The use of a balloon guide catheter during endovascular procedures shortened puncture-to-reperfusion time by 21% (8 minutes). CONCLUSIONS: Imaging-to-reperfusion time is a significant predictor of outcome in the ESCAPE trial. Inefficiencies in triaging, off-hour presentation, intravenous alteplase administration, use of general anesthesia, and endovascular techniques offer major opportunities for improvement in workflow. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT01778335

    Randomized assessment of rapid endovascular treatment of ischemic stroke.

    Get PDF
    BACKGROUND: Among patients with a proximal vessel occlusion in the anterior circulation, 60 to 80% of patients die within 90 days after stroke onset or do not regain functional independence despite alteplase treatment. We evaluated rapid endovascular treatment in addition to standard care in patients with acute ischemic stroke with a small infarct core, a proximal intracranial arterial occlusion, and moderate-to-good collateral circulation. METHODS: We randomly assigned participants to receive standard care (control group) or standard care plus endovascular treatment with the use of available thrombectomy devices (intervention group). Patients with a proximal intracranial occlusion in the anterior circulation were included up to 12 hours after symptom onset. Patients with a large infarct core or poor collateral circulation on computed tomography (CT) and CT angiography were excluded. Workflow times were measured against predetermined targets. The primary outcome was the score on the modified Rankin scale (range, 0 [no symptoms] to 6 [death]) at 90 days. A proportional odds model was used to calculate the common odds ratio as a measure of the likelihood that the intervention would lead to lower scores on the modified Rankin scale than would control care (shift analysis). RESULTS: The trial was stopped early because of efficacy. At 22 centers worldwide, 316 participants were enrolled, of whom 238 received intravenous alteplase (120 in the intervention group and 118 in the control group). In the intervention group, the median time from study CT of the head to first reperfusion was 84 minutes. The rate of functional independence (90-day modified Rankin score of 0 to 2) was increased with the intervention (53.0%, vs. 29.3% in the control group; P CONCLUSIONS: Among patients with acute ischemic stroke with a proximal vessel occlusion, a small infarct core, and moderate-to-good collateral circulation, rapid endovascular treatment improved functional outcomes and reduced mortality. (Funded by Covidien and others; ESCAPE ClinicalTrials.gov number, NCT01778335.)

    Healthy life-year costs of treatment speed from arrival to endovascular thrombectomy in patients with ischemic stroke

    No full text
    Importance The benefits of endovascular thrombectomy (EVT) are time dependent. Prior studies may have underestimated the time-benefit association because time of onset is imprecisely known. Objective To assess the lifetime outcomes associated with speed of endovascular thrombectomy in patients with acute ischemic stroke due to large-vessel occlusion (LVO). Data Sources PubMed was searched for randomized clinical trials of stent retriever thrombectomy devices vs medical therapy in patients with anterior circulation LVO within 12 hours of last known well time, and for which a peer-reviewed, complete primary results article was published by August 1, 2020. Study Selection All randomized clinical trials of stent retriever thrombectomy devices vs medical therapy in patients with anterior circulation LVO within 12 hours of last known well time were included. Data Extraction/Synthesis Patient-level data regarding presenting clinical and imaging features and functional outcomes were pooled from the 7 retrieved randomized clinical trials of stent retriever thrombectomy devices (entirely or predominantly) vs medical therapy. All 7 identified trials published in a peer-reviewed journal (by August 1, 2020) contributed data. Detailed time metrics were collected including last known well–to-door (LKWTD) time; last known well/onset-to-puncture (LKWTP) time; last known well–to-reperfusion (LKWR) time; door-to-puncture (DTP) time; and door-to-reperfusion (DTR) time. Main Outcomes and Measures Change in healthy life-years measured as disability-adjusted life-years (DALYs). DALYs were calculated as the sum of years of life lost (YLL) owing to premature mortality and years of healthy life lost because of disability (YLD). Disability weights were assigned using the utility-weighted modified Rankin Scale. Age-specific life expectancies without stroke were calculated from 2017 US National Vital Statistics. Results Among the 781 EVT-treated patients, 406 (52.0%) were early-treated (LKWTP ≤4 hours) and 375 (48.0%) were late-treated (LKWTP &gt;4-12 hours). In early-treated patients, LKWTD was 188 minutes (interquartile range, 151.3-214.8 minutes) and DTP 105 minutes (interquartile range, 76-135 minutes). Among the 298 of 380 (78.4%) patients with substantial reperfusion, median DTR time was 145.0 minutes (interquartile range, 111.5-185.5 minutes). Care process delays were associated with worse clinical outcomes in LKW-to-intervention intervals in early-treated patients and in door-to-intervention intervals in early-treated and late-treated patients, and not associated with LKWTD intervals, eg, in early-treated patients, for each 10-minute delay, healthy life-years lost were DTP 1.8 months vs LKWTD 0.0 months; P &lt; .001. Considering granular time increments, the amount of healthy life-time lost associated with each 1 second of delay was DTP 2.2 hours and DTR 2.4 hours. Conclusions and Relevance In this study, care delays were associated with loss of healthy life-years in patients with acute ischemic stroke treated with EVT, particularly in the postarrival time period. The finding that every 1 second of delay was associated with loss of 2.2 hours of healthy life may encourage continuous quality improvement in door-to-treatment times
    corecore