757 research outputs found

    Benchmark experiment and theory for near-threshold excitation of helium by electron impact

    Get PDF
    A new experimental technique has been applied to measure absolute scattering cross sections for electron impact excitation of the n ≤ 2, 3 states of helium at near-threshold energies. The experimental results are compared with predictions from recent state-of-the-art theoretical calculations. The calculations are performed using the R-matrix with pseudostates, B-spline R-matrix, and the convergent close-coupling methods. Generally, very good agreement is found between the experiment and the three theorie

    Two-particle interference of electron pairs on a molecular level

    Full text link
    We investigate the photo-doubleionization of H2H_2 molecules with 400 eV photons. We find that the emitted electrons do not show any sign of two-center interference fringes in their angular emission distributions if considered separately. In contrast, the quasi-particle consisting of both electrons (i.e. the "dielectron") does. The work highlights the fact that non-local effects are embedded everywhere in nature where many-particle processes are involved

    The UTMOST Survey for Magnetars, Intermittent pulsars, RRATs and FRBs I: System description and overview

    Get PDF
    We describe the ongoing `Survey for Magnetars, Intermittent pulsars, Rotating radio transients and Fast radio bursts' (SMIRF), performed using the newly refurbished UTMOST telescope. SMIRF repeatedly sweeps the southern Galactic plane performing real-time periodicity and single-pulse searches, and is the first survey of its kind carried out with an interferometer. SMIRF is facilitated by a robotic scheduler which is capable of fully autonomous commensal operations. We report on the SMIRF observational parameters, the data analysis methods, the survey's sensitivities to pulsars, techniques to mitigate radio frequency interference and present some early survey results. UTMOST's wide field of view permits a full sweep of the Galactic plane to be performed every fortnight, two orders of magnitude faster than previous surveys. In the six months of operations from January to June 2018, we have performed ∼10\sim 10 sweeps of the Galactic plane with SMIRF. Notable blind re-detections include the magnetar PSR J1622−-4950, the RRAT PSR J0941−-3942 and the eclipsing pulsar PSR J1748−-2446A. We also report the discovery of a new pulsar, PSR J1705−-54. Our follow-up of this pulsar with the UTMOST and Parkes telescopes at an average flux limit of ≤20\leq 20 mJy and ≤0.16\leq 0.16 mJy respectively, categorizes this as an intermittent pulsar with a high nulling fraction of <0.002< 0.002Comment: Submitted to MNRAS, comments welcom

    2018 X-Ray and Radio Outburst of Magnetar XTE J1810–197

    Get PDF
    We present the earliest X-ray observations of the 2018 outburst of XTE J1810−197, the first outburst since its 2003 discovery as the prototypical transient and radio-emitting anomalous X-ray pulsar (AXP). The Monitor of All-sky X-ray Image (MAXI) detected XTE J1810−197 immediately after a November 20–26 visibility gap, contemporaneous with its reactivation as a radio pulsar, first observed on December 8. On December 13 the Nuclear Spectroscopic Telescope Array (NuSTAR) detected X-ray emission up to at least 30 keV, with a spectrum well-characterized by a blackbody plus power-law model with temperature kT = 0.74 ± 0.02 keV and photon index Γ = 4.4 ± 0.2 or by a two-blackbody model with kT = 0.59 ± 0.04 keV and kT = 1.0 ± 0.1 keV, both including an additional power-law component to account for emission above 10 keV, with Γ_h = −0.2 ± 1.5 and Γ_h = 1.5 ± 0.5, respectively. The latter index is consistent with hard X-ray flux reported for the nontransient magnetars. In the 2–10 keV bandpass, the absorbed flux is 2 × 10^(−10) erg s^(−1) cm^(−2), a factor of 2 greater than the maximum flux extrapolated for the 2003 outburst. The peak of the sinusoidal X-ray pulse lags the radio pulse by ≈0.13 cycles, consistent with their phase relationship during the 2003 outburst. This suggests a stable geometry in which radio emission originates on magnetic field lines containing currents that heat a spot on the neutron star surface. However, a measured energy-dependent phase shift of the pulsed X-rays suggests that all X-ray emitting regions are not precisely coaligned

    Searching for Lee-Wick Gauge Bosons at the LHC

    Get PDF
    In an extension of the Standard Model(SM) based on the ideas of Lee and Wick, Grinstein, O'Connell and Wise have found an interesting way to remove the usual quadratically divergent contributions to the Higgs mass induced by radiative corrections. Phenomenologically, the model predicts the existence of Terascale, negative-norm copies of the usual SM fields with rather unique properties: ghost-like propagators and negative decay widths, but with otherwise SM-like couplings. The model is both unitary and causal on macroscopic scales. In this paper we examine whether or not such states with these unusual properties can be uniquely identified as such at the LHC. We find that in the extended strong and electroweak gauge boson sector of the model, which is the simplest one to analyze, such an identification can be rather difficult. Observation of heavy gluon-like resonances in the dijet channel offers the best hope for this identification.Comment: 17 pages, 4 figs; discussion adde
    • …
    corecore