21,478 research outputs found
The Parker Magnetostatic Theorem
We demonstrate the Parker Magnetostatic Theorem in terms of a small
neighborhood in solution space containing continuous force-free magnetic fields
in small deviations from the uniform field. These fields are embedded in a
perfectly conducting fluid bounded by a pair of rigid plates where each field
is anchored, taking the plates perpendicular to the uniform field. Those
force-free fields obtainable from the uniform field by continuous magnetic
footpoint displacements at the plates have field topologies that are shown to
be a restricted subset of the field topologies similarly created without
imposing the force-free equilibirum condition. The theorem then follows from
the deduction that a continuous nonequilibrum field with a topology not in that
subset must find a force-free state containing tangential discontinuities.Comment: 13 pages, no figur
Electrostatic propulsion system with a direct nuclear electrogenerator Patent
Nuclear electric generator for accelerating charged propellant particles in electrostatic propulsion syste
Reciprocal relativity of noninertial frames: quantum mechanics
Noninertial transformations on time-position-momentum-energy space {t,q,p,e}
with invariant Born-Green metric ds^2=-dt^2+dq^2/c^2+(1/b^2)(dp^2-de^2/c^2) and
the symplectic metric -de/\dt+dp/\dq are studied. This U(1,3) group of
transformations contains the Lorentz group as the inertial special case. In the
limit of small forces and velocities, it reduces to the expected Hamilton
transformations leaving invariant the symplectic metric and the nonrelativistic
line element ds^2=dt^2. The U(1,3) transformations bound relative velocities by
c and relative forces by b. Spacetime is no longer an invariant subspace but is
relative to noninertial observer frames. Born was lead to the metric by a
concept of reciprocity between position and momentum degrees of freedom and for
this reason we call this reciprocal relativity.
For large b, such effects will almost certainly only manifest in a quantum
regime. Wigner showed that special relativistic quantum mechanics follows from
the projective representations of the inhomogeneous Lorentz group. Projective
representations of a Lie group are equivalent to the unitary reprentations of
its central extension. The same method of projective representations of the
inhomogeneous U(1,3) group is used to define the quantum theory in the
noninertial case. The central extension of the inhomogeneous U(1,3) group is
the cover of the quaplectic group Q(1,3)=U(1,3)*s H(4). H(4) is the
Weyl-Heisenberg group. A set of second order wave equations results from the
representations of the Casimir operators
On Asymptotic Optimality of Dual Scheduling Algorithm In A Generalized Switch
Generalized switch is a model of a queueing system where parallel servers are interdependent and have time-varying service capabilities. This paper considers the dual scheduling algorithm that uses rate control and queue-length based scheduling to allocate resources for a generalized switch. We consider a saturated system in which each user has infinite amount of data to be served. We prove the asymptotic optimality of the dual scheduling algorithm for such a system, which says that the vector of average service rates of the scheduling algorithm maximizes some aggregate concave utility functions. As the fairness objectives can be achieved by appropriately choosing utility functions, the asymptotic optimality establishes the fairness properties of the dual scheduling algorithm.
The dual scheduling algorithm motivates a new architecture for scheduling, in which an additional queue is introduced to interface the user data queue and the time-varying server and to modulate the scheduling process, so as to achieve different performance objectives. Further research would include scheduling with Quality of Service guarantees with the dual scheduler, and its application and implementation in various versions of the generalized switch model
Random Access Game and Medium Access Control Design
Motivated partially by a control-theoretic viewpoint, we propose a game-theoretic model, called random access game, for contention control. We characterize Nash equilibria of random access games, study their dynamics, and propose distributed algorithms (strategy evolutions) to achieve Nash equilibria. This provides a general analytical framework that is capable of modeling a large class of system-wide quality-of-service (QoS) models via the specification of per-node utility functions, in which system-wide fairness or service differentiation can be achieved in a distributed manner as long as each node executes a contention resolution algorithm that is designed to achieve the Nash equilibrium. We thus propose a novel medium access method derived from carrier sense multiple access/collision avoidance (CSMA/CA) according to distributed strategy update mechanism achieving the Nash equilibrium of random access game. We present a concrete medium access method that adapts to a continuous contention measure called conditional collision probability, stabilizes the network into a steady state that achieves optimal throughput with targeted fairness (or service differentiation), and can decouple contention control from handling failed transmissions. In addition to guiding medium access control design, the random access game model also provides an analytical framework to understand equilibrium and dynamic properties of different medium access protocols
System Level Synthesis
This article surveys the System Level Synthesis framework, which presents a
novel perspective on constrained robust and optimal controller synthesis for
linear systems. We show how SLS shifts the controller synthesis task from the
design of a controller to the design of the entire closed loop system, and
highlight the benefits of this approach in terms of scalability and
transparency. We emphasize two particular applications of SLS, namely
large-scale distributed optimal control and robust control. In the case of
distributed control, we show how SLS allows for localized controllers to be
computed, extending robust and optimal control methods to large-scale systems
under practical and realistic assumptions. In the case of robust control, we
show how SLS allows for novel design methodologies that, for the first time,
quantify the degradation in performance of a robust controller due to model
uncertainty -- such transparency is key in allowing robust control methods to
interact, in a principled way, with modern techniques from machine learning and
statistical inference. Throughout, we emphasize practical and efficient
computational solutions, and demonstrate our methods on easy to understand case
studies.Comment: To appear in Annual Reviews in Contro
Processing peracetic acid treated bloodmeal into bioplastic
Renewable and biodegradable bioplastics can be produced from biopolymers such as proteins. Animal blood is a by-product from meat processing and is rich in protein. It is dried into low value bloodmeal and is used as animal feed or fertiliser. Previous work has shown that bloodmeal can be converted into a thermoplastic using water, urea, sodium dodecyl sulphate (SDS), sodium sulphite and triethylene glycol (TEG). To increase its range of applications and acceptance from consumers, the colour and odour was removed from bloodmeal using peracetic acid (PAA). The aim of this study was to investigate the bioplastic processing of 3-5% (w/w) PAA treated bloodmeal.
3-5% PAA treated bloodmeal powder was compression moulded using different combinations of water, TEG, glycerol, SDS, sodium sulphite, urea, borax, salt and sodium silicate at concentrations up to 60 parts per hundred bloodmeal (pphBM). Partially consolidated extrudates and fully consolidated compression moulded sheets were obtained using a combination of water, TEG and SDS. 4% PAA treated bloodmeal produced the best compression moulded sheets and extrudates and was chosen for investigating the effects of water, TEG and SDS concentration on consolidation, specific mechanical energy input (SME) and product colour during extrusion.
Analysis of variance (ANOVA) showed SDS was the most important factor influencing its ability to be extruded because it detangled protein chains and allowed them to form new stabilising interactions required for consolidation. The best extruded sample, which was 98% consolidated and 49% white, contained 40 pphBM water, 10 pphBM TEG and 6 pphBM SDS
Cross-layer optimization in TCP/IP networks
TCP-AQM can be interpreted as distributed primal-dual algorithms to maximize aggregate utility over source rates. We show that an equilibrium of TCP/IP, if exists, maximizes aggregate utility over both source rates and routes, provided congestion prices are used as link costs. An equilibrium exists if and only if this utility maximization problem and its Lagrangian dual have no duality gap. In this case, TCP/IP incurs no penalty in not splitting traffic across multiple paths. Such an equilibrium, however, can be unstable. It can be stabilized by adding a static component to link cost, but at the expense of a reduced utility in equilibrium. If link capacities are optimally provisioned, however, pure static routing, which is necessarily stable, is sufficient to maximize utility. Moreover single-path routing again achieves the same utility as multipath routing at optimality
Static current-sheet models of quiescent prominences
A particular class of theoretical models idealize the prominence to be a discrete flat electric-current sheet suspended vertically in a potential magnetic field. The weight of the prominence is supported by the Lorentz force in the current sheet. These models can be extended to have curved electric-current sheets and to vary three-dimensionally. The equation for force balance is 1 over 4 pi (del times B) times Bdel p- p9 z=zero. Using Cartesian coordinates we take, for simplicity, a uniform gravity with constant acceleration g in the direction -z. If we are interested not in the detailed internal structure of the prominence, but in the global magnetic configuration around the prominence, we may take prominence plasma to be cold. Consideration is given to how such equilibrium states can be constructed. To simplify the mathematical problem, suppose there is no electric current in the atmosphere except for the discrete currents in the cold prominence sheet. Let us take the plane z =0 to be the base of the atmosphere and restrict our attention to the domain z greater than 0. The task we have is to solve for a magnetic field which is everywhere potential except on some free surface S, subject to suit able to boundary conditions. The surface S is determined by requiring that it possesses a discrete electric current density such that the Lorentz force on it is everywhere vertically upward to balance the weight of the material m(S). Since the magnetic field is potential in the external atmosphere, the latter is decoupled from the magnetic field and its plane parallel hydrostatic pressure and density can be prescribed
- …
