1,567 research outputs found

    Exchange coupling between silicon donors: the crucial role of the central cell and mass anisotropy

    Get PDF
    Donors in silicon are now demonstrated as one of the leading candidates for implementing qubits and quantum information processing. Single qubit operations, measurements and long coherence times are firmly established, but progress on controlling two qubit interactions has been slower. One reason for this is that the inter donor exchange coupling has been predicted to oscillate with separation, making it hard to estimate in device designs. We present a multivalley effective mass theory of a donor pair in silicon, including both a central cell potential and the effective mass anisotropy intrinsic in the Si conduction band. We are able to accurately describe the single donor properties of valley-orbit coupling and the spatial extent of donor wave functions, highlighting the importance of fitting measured values of hyperfine coupling and the orbital energy of the 1s1s levels. Ours is a simple framework that can be applied flexibly to a range of experimental scenarios, but it is nonetheless able to provide fast and reliable predictions. We use it to estimate the exchange coupling between two donor electrons and we find a smoothing of its expected oscillations, and predict a monotonic dependence on separation if two donors are spaced precisely along the [100] direction.Comment: Published version. Corrected b and B values from previous versio

    Surface code architecture for donors and dots in silicon with imprecise and nonuniform qubit couplings

    Get PDF
    A scaled quantum computer with donor spins in silicon would benefit from a viable semiconductor framework and a strong inherent decoupling of the qubits from the noisy environment. Coupling neighbouring spins via the natural exchange interaction according to current designs requires gate control structures with extremely small length scales. We present a silicon architecture where bismuth donors with long coherence times are coupled to electrons that can shuttle between adjacent quantum dots, thus relaxing the pitch requirements and allowing space between donors for classical control devices. An adiabatic SWAP operation within each donor/dot pair solves the scalability issues intrinsic to exchange-based two-qubit gates, as it does not rely on sub-nanometer precision in donor placement and is robust against noise in the control fields. We use this SWAP together with well established global microwave Rabi pulses and parallel electron shuttling to construct a surface code that needs minimal, feasible local control.Comment: Published version - more detailed discussions, robustness to dephasing pointed out additionall

    Rapid and robust spin state amplification

    Get PDF
    Electron and nuclear spins have been employed in many of the early demonstrations of quantum technology (QT). However applications in real world QT are limited by the difficulty of measuring single spins. Here we show that it is possible to rapidly and robustly amplify a spin state using a lattice of ancillary spins. The model we employ corresponds to an extremely simple experimental system: a homogenous Ising-coupled spin lattice in one, two or three dimensions, driven by a continuous microwave field. We establish that the process can operate at finite temperature (imperfect initial polarisation) and under the effects of various forms of decoherence.Comment: 5 pages, 2 figure

    From Goldilocks to Twin Peaks: multiple optimal regimes for quantum transport in disordered networks

    Get PDF
    Understanding energy transport in quantum systems is crucial for an understanding of light-harvesting in nature, and for the creation of new quantum technologies. Open quantum systems theory has been successfully applied to predict the existence of environmental noise-assisted quantum transport (ENAQT) as a widespread phenomenon occurring in biological and artificial systems. That work has been primarily focused on several `canonical' structures, from simple chains, rings and crystals of varying dimensions, to well-studied light-harvesting complexes. Studying those particular systems has produced specific assumptions about ENAQT, including the notion of a single, ideal, range of environmental coupling rates that improve energy transport. In this paper we show that a consistent subset of physically modelled transport networks can have at least two ENAQT peaks in their steady state transport efficiency.Comment: Accepted Manuscript, 11 pages, 16 figure

    Localisation determines the optimal noise rate for quantum transport

    Get PDF
    This work was supported by EPSRC Grant No. EP/L015110/1.Environmental noise plays a key role in determining the efficiency of transport in quantum systems. However, disorder and localisation alter the impact of such noise on energy transport. To provide a deeper understanding of this relationship we perform a systematic study of the connection between eigenstate localisation and the optimal dephasing rate in 1D chains. The effects of energy gradients and disorder on chains of various lengths are evaluated and we demonstrate how optimal transport efficiency is determined by both size-independent, as well as size-dependent factors. By discussing how size-dependent influences emerge from finite size effects we establish when these effects are suppressed, and show that a simple power law captures the interplay between size-dependent and size-independent responses. Moving beyond phenomenological pure dephasing, we implement a finite temperature Bloch–Redfield model that captures detailed balance. We show that the relationship between localisation and optimal environmental coupling strength continues to apply at intermediate and high temperature but breaks down in the low temperature limit.Publisher PDFPeer reviewe

    Polarization--universal rejection filtering by ambichiral structures made of indefinite dielectric--magnetic materials

    Full text link
    An ambichiral structure comprising sheets of an anisotropic dielectric material rejects normally incident plane waves of one circular polarization (CP) state but not of the other CP state, in its fundamental Bragg regime. However, if the same structure is made of an dielectric--magnetic material with indefinite permittivity and permeability dyadics, it may function as a polarization--universal rejection filter because two of the four planewave components of the electromagnetic field phasors in each sheet are of the positive--phase--velocity type and two are of the negative--phase--velocity type.Comment: Cleaned citations in the tex

    Bath induced coherence and the secular approximation

    Get PDF
    Finding efficient descriptions of how an environment affects a collection of discrete quantum systems would lead to new insights into many areas of modern physics. Markovian, or time-local, methods work well for individual systems, but for groups a question arises: does system-bath or inter-system coupling dominate the dissipative dynamics? The answer has profound consequences for the long-time quantum correlations within the system. We consider two bosonic modes coupled to a bath. By comparing an exact solution to different Markovian master equations, we find that a smooth crossover of the equations-of-motion between dominant inter-system and system-bath coupling exists - but requires a non-secular master equation. We predict a singular behaviour of the dynamics, and show that the ultimate failure of non-secular equations of motion is essentially a failure of the Markov approximation. Our findings justify the use of time-local theories throughout the crossover between system-bath dominated and inter-system-coupling dominated dynamics.PostprintPeer reviewe

    Equilibrium fluctuation theorems compatible with anomalous response

    Full text link
    Previously, we have derived a generalization of the canonical fluctuation relation between heat capacity and energy fluctuations C=β2<δU2>C=\beta^{2}<\delta U^{2}>, which is able to describe the existence of macrostates with negative heat capacities C<0C<0. In this work, we extend our previous results for an equilibrium situation with several control parameters to account for the existence of states with anomalous values in other response functions. Our analysis leads to the derivation of three different equilibrium fluctuation theorems: the \textit{fundamental and the complementary fluctuation theorems}, which represent the generalization of two fluctuation identities already obtained in previous works, and the \textit{associated fluctuation theorem}, a result that has no counterpart in the framework of Boltzmann-Gibbs distributions. These results are applied to study the anomalous susceptibility of a ferromagnetic system, in particular, the case of 2D Ising model.Comment: Extended version of the paper published in JSTA
    corecore