117 research outputs found

    Zero field muon spin lattice relaxation rate in a Heisenberg ferromagnet at low temperature

    Full text link
    We provide a theoretical framework to compute the zero field muon spin relaxation rate of a Heisenberg ferromagnet at low temperature. We use the linear spin wave approximation. The rate, which is a measure of the spin lattice relaxation induced by the magnetic fluctuations along the easy axis, allows one to estimate the magnon stiffness constant.Comment: REVTeX 3.0 manuscript, 5 pages, no figure. Published in Phys. Rev. B 52, 9155 (1995

    Multi-k\vec{k} Configurations

    Full text link
    Using resonant x-ray scattering to perform diffraction experiments at the U M4_{4} edge novel reflections of the generic form have been observed in UAs$_{0.8}$Se$_{0.2}$ where $\vec{k} = $, with $k = {1/2}$ reciprocal lattice units, is the wave vector of the primary (magnetic) order parameter. The reflections, with 10410^{-4} of the magnetic intensities, cannot be explained on the basis of the primary order parameter within standard scattering theory. A full experimental characterisation of these reflections is presented including their energy, azimuthal and temperature dependencies. On this basis we establish that the reflections most likely arise from the electric dipole operator involving transitions between the core 3d and partially filled $5f$ states. The temperature dependence couples the peak to the triple-k\vec{k} region of the phase diagram: Below 50\sim 50 K, where previous studies have suggested a transition to a double-k\vec{k} state, the intensity of the is dramatically reduced. Whilst we are unable to give a definite explanation of how these novel reflections appear, this paper concludes with a discussion of possible ideas for these reflections in terms of the coherent superposition of the 3 primary (magnetic) order parameters

    Final state effects on superfluid 4^{\bf 4}He in the deep inelastic regime

    Get PDF
    A study of Final State Effects (FSE) on the dynamic structure function of superfluid 4^4He in the Gersch--Rodriguez formalism is presented. The main ingredients needed in the calculation are the momentum distribution and the semidiagonal two--body density matrix. The influence of these ground state quantities on the FSE is analyzed. A variational form of ρ2\rho_2 is used, even though simpler forms turn out to give accurate results if properly chosen. Comparison to the experimental response at high momentum transfer is performed. The predicted response is quite sensitive to slight variations on the value of the condensate fraction, the best agreement with experiment being obtained with n0=0.082n_0=0.082. Sum rules of the FSE broadening function are also derived and commented. Finally, it is shown that Gersch--Rodriguez theory produces results as accurate as those coming from other more recent FSE theories.Comment: 20 pages, RevTex 3.0, 11 figures available upon request, to be appear in Phys. Rev.

    4f spin density in the reentrant ferromagnet SmMn2Ge2

    Full text link
    The spin contribution to the magnetic moment in SmMn2Ge2 has been measured by magnetic Compton scattering in both the low and high temperature ferromagnetic phases. At low temperature, the Sm site is shown to possess a large 4f spin moment of 3.4 +/- 0.1 Bohr magnetons, aligned antiparallel to the total magnetic moment. At high temperature, the data show conclusively that ordered magnetic moments are present on the samarium site.Comment: 5 pages, 2 figures, transferred from PRL to PRB (Rapid Comm.

    Critical Dynamics of Magnets

    Get PDF
    We review our current understanding of the critical dynamics of magnets above and below the transition temperature with focus on the effects due to the dipole--dipole interaction present in all real magnets. Significant progress in our understanding of real ferromagnets in the vicinity of the critical point has been made in the last decade through improved experimental techniques and theoretical advances in taking into account realistic spin-spin interactions. We start our review with a discussion of the theoretical results for the critical dynamics based on recent renormalization group, mode coupling and spin wave theories. A detailed comparison is made of the theory with experimental results obtained by different measuring techniques, such as neutron scattering, hyperfine interaction, muon--spin--resonance, electron--spin--resonance, and magnetic relaxation, in various materials. Furthermore we discuss the effects of dipolar interaction on the critical dynamics of three--dimensional isotropic antiferromagnets and uniaxial ferromagnets. Special attention is also paid to a discussion of the consequences of dipolar anisotropies on the existence of magnetic order and the spin--wave spectrum in two--dimensional ferromagnets and antiferromagnets. We close our review with a formulation of critical dynamics in terms of nonlinear Langevin equations.Comment: Review article (154 pages, figures included

    Systematic Cu-63 NQR studies of the stripe phase in La(1.6-x)Nd(0.4)Sr(x)CuO(4) for 0.07 <= x <= 0.25

    Full text link
    We demonstrate that the integrated intensity of Cu-63 nuclear quadrupole resonance (NQR) in La(1.6-x)Nd(0.4)Sr(x)CuO(4) decreases dramatically below the charge-stripe ordering temperature T(charge). Comparison with neutron and X-ray scattering indicates that the wipeout fraction F(T) (i.e. the missing fraction of the integrated intensity of the NQR signal) represents the charge-stripe order parameter. The systematic study reveals bulk charge-stripe order throughout the superconducting region 0.07 <= x <= 0.25. As a function of the reduced temperature t = T/T(charge), the temperature dependence of F(t) is sharpest for the hole concentration x=1/8, indicating that x=1/8 is the optimum concentration for stripe formation.Comment: 10 pages of text and captions, 11 figures in postscript. Final version, with new data in Fig.

    Spin Susceptibility in Underdoped YBa2Cu3O6+x\bf YBa_2Cu_3O_{6+x}

    Full text link
    We report a comprehensive polarized and unpolarized neutron scattering study of the evolution of the dynamical spin susceptibility with temperature and doping in three underdoped single crystals of the \YBCO{6+x} high temperature superconductor: \YBCO{6.5} (Tc = 52 K), \YBCO{6.7} (Tc = 67 K), and \YBCO{6.85} (T_c = 87 K). Theoretical implications of these data are discussed, and a critique of recent attempts to relate the spin excitations to the thermodynamics of high temperature superconductors is given.Comment: minor revisions, to appear in PR
    corecore