6,774 research outputs found

    The United States is Obligated to Take All Refugees of a Kind

    Get PDF
    A Hobbesian Realist position concerning Nation States and their generative grounds in the Social Contract obligates the United States to accept any and all refugees of conflict who are willing to recognize the sovereign power of the United States by submitting to citizenship requirements determined by the United States

    Vertical Structure of Stationary Accretion Disks with a Large-Scale Magnetic Field

    Full text link
    In earlier works we pointed out that the disk's surface layers are non-turbulent and thus highly conducting (or non-diffusive) because the hydrodynamic and/or magnetorotational (MRI) instabilities are suppressed high in the disk where the magnetic and radiation pressures are larger than the plasma thermal pressure. Here, we calculate the vertical profiles of the {\it stationary} accretion flows (with radial and azimuthal components), and the profiles of the large-scale, magnetic field taking into account the turbulent viscosity and diffusivity and the fact that the turbulence vanishes at the surface of the disk. Also, here we require that the radial accretion speed be zero at the disk's surface and we assume that the ratio of the turbulent viscosity to the turbulent magnetic diffusivity is of order unity. Thus at the disk's surface there are three boundary conditions. As a result, for a fixed dimensionless viscosity α\alpha-value, we find that there is a definite relation between the ratio R{\cal R} of the accretion power going into magnetic disk winds to the viscous power dissipation and the midplane plasma-β\beta, which is the ratio of the plasma to magnetic pressure in the disk. For a specific disk model with R{\cal R} of order unity we find that the critical value required for a stationary solution is βc2.4r/(αh)\beta_c \approx 2.4r/(\alpha h), where hh the disk's half thickness. For weaker magnetic fields, β>βc\beta > \beta_c, we argue that the poloidal field will advect outward while for β<βc\beta< \beta_c it will advect inward. Alternatively, if the disk wind is negligible (R1{\cal R} \ll 1), there are stationary solutions with ββc\beta \gg \beta_c.Comment: 5 pages, 3 figure

    Kelvin-Helmholtz Instability of the Magnetopause of Disc-Accreting Stars

    Full text link
    This work investigates the short wavelength stability of the magnetopause between a rapidly-rotating, supersonic, dense accretion disc and a slowly-rotating low-density magnetosphere of a magnetized star. The magnetopause is a strong shear layer with rapid changes in the azimuthal velocity, the density, and the magnetic field over a short radial distance and thus the Kelvin-Helmholtz (KH) instability may be important. The plasma dynamics is treated using non-relativistic, compressible (isentropic) magnetohydrodynamics. It is necessary to include the displacement current in order that plasma wave velocities remain less than the speed of light. We focus mainly on the case of a star with an aligned dipole magnetic field so that the magnetic field is axial in the disc midplane and perpendicular to the disc flow velocity. However, we also give results for cases where the magnetic field is at an arbitrary angle to the flow velocity. For the aligned dipole case the magnetopause is most unstable for KH waves propagating in the azimuthal direction perpendicular to the magnetic field which tends to stabilize waves propagating parallel to it. The wave phase velocity is that of the disc matter. A quasi-linear theory of the saturation of the instability leads to a wavenumber (kk) power spectrum k1\propto k^{-1} of the density and temperature fluctuations of the magnetopause, and it gives the mass accretion and angular momentum inflow rates across the magnetopause. For self-consistent conditions this mass accretion rate will be equal to the disc accretion rate at large distances from the magnetopause.Comment: 8 pages, 7 figure
    corecore