49 research outputs found

    Novel Information on the Morphology, Phylogeny and Distribution of Camallanid Mematodes from Marine and Freshwater Hosts in South Africa, Including the Description of \u3ci\u3eCamallanus sodwanaensis\u3c/i\u3e n. sp.

    Get PDF
    Four species of previously known nematodes from the family Camallanidae were found from different hosts in South Africa: Batrachocamallanus xenopodis from the frog Xenopus muelleri, Paracamallanus cyathopharynx, and Procamallanus pseudolaeviconchus from the catfish Clarias gariepinus and Spirocamallanus daleneae from the catfish Synodontis zambezensis. In the material collected from various marine fishes, several specimens of nematodes from the genus Camallanus clearly differed from all previously known species. Based on morphological differences these specimens are assigned to a new species, C. sodwanaensis. Molecular data of 18S and 28S rDNA and COI sequences are provided for the collected species and a phylogenetic analyses based on 28S gene fragments are presented

    Taxonomic re-evaluation of African anuran trypanosomes with the redescription and molecular diagnosis of Trypanosoma (Trypanosoma) nelspruitense Laveran, 1904 and Trypanosoma (Haematomonas) grandicolor Pienaar, 1962

    Get PDF
    The aquatic and terrestrial clades of species of Trypanosoma could provide insight into the evolutionary history of the genus, as well as complementary information for biomedical studies of medically and economically important species of Trypanosoma. The ecological interactions and phylogeny of aquatic trypanosomes are currently not well-understood, mostly due to their complex life cycles and a deficiency of data. The species of Trypanosoma from African anuran hosts are of the least understood taxa in the genus. Trypanosomes were collected from South African frogs and subjected to morphological and phylogenetic analyses. This study redescribes Trypanosoma (Trypanosoma) nelspruitense Laveran, 1904 and Trypanosoma (Haematomonas) grandicolor Pienaar, 1962, with morphological and molecular data. The present study aims to create a platform for further future research on African anuran trypanosomes

    Monophyly of the species of Hepatozoon (Adeleorina: Hepatozoidae) parasitizing (African) anurans, with the description of three new species from hyperoliid frogs in South Africa

    Get PDF
    Haemogregarines (Apicomplexa: Adeleiorina) are a diverse group of haemoparasites reported from almost all vertebrate classes. The most commonly recorded haemogregarines to parasitize anurans are species of Hepatozoon Miller, 1908. To date 16 Hepatozoon species have been described from anurans in Africa, with only a single species, Hepatozoon hyperolli (Hoare, 1932), infecting a member of the Hyperoliidae. Furthermore, only two Hepatozoon species are known from South African anurans, namely Hepatozoon theileri (Laveran, 1905) and Hepatozoon ixoxo Netherlands, Cook and Smit, 2014, from Amietia delalandii (syn. Amietia quecketti) and three Sclerophrys species, respectively. Blood samples were collected from a total of 225 individuals representing nine hyperoliid species from several localities throughout northern KwaZulu-Natal, South Africa. Twenty frogs from three species were found positive for haemogregarines, namely Afrixalus fornasinii (6/14), Hyperolius argus (2/39), and Hyperolius marmoratus (12/74). Based on morphological characteristics, morphometrics and molecular findings three new haemogregarine species, Hepatozoon involucrum Netherlands, Cook and Smit n. sp., Hepatozoon tenuis Netherlands, Cook and Smit n. sp. and Hepatozoon thori Netherlands, Cook and Smit n. sp., are described from hyperoliid hosts. Furthermore, molecular analyses show anuran Hepatozoon species to be a separate monophyletic group, with species isolated from African hosts forming a monophyletic clade within this cluster.Peer reviewe

    Monophyly of the species of Hepatozoon

    Get PDF
    Haemogregarines (Apicomplexa: Adeleiorina) are a diverse group of haemoparasites reported from almost all vertebrate classes. The most commonly recorded haemogregarines to parasitize anurans are species of Hepatozoon Miller, 1908. To date 16 Hepatozoon species have been described from anurans in Africa, with only a single species, Hepatozoon hyperolli (Hoare, 1932), infecting a member of the Hyperoliidae. Furthermore, only two Hepatozoon species are known from South African anurans, namely Hepatozoon theileri (Laveran, 1905) and Hepatozoon ixoxo Netherlands, Cook and Smit, 2014, from Amietia delalandii (syn. Amietia quecketti) and three Sclerophrys species, respectively. Blood samples were collected from a total of 225 individuals representing nine hyperoliid species from several localities throughout northern KwaZulu-Natal, South Africa. Twenty frogs from three species were found positive for haemogregarines, namely Afrixalus fornasinii (6/14), Hyperolius argus (2/39), and Hyperolius marmoratus (12/74). Based on morphological characteristics, morphometrics and molecular findings three new haemogregarine species, Hepatozoon involucrum Netherlands, Cook and Smit n. sp., Hepatozoon tenuis Netherlands, Cook and Smit n. sp. and Hepatozoon thori Netherlands, Cook and Smit n. sp., are described from hyperoliid hosts. Furthermore, molecular analyses show anuran Hepatozoon species to be a separate monophyletic group, with species isolated from African hosts forming a monophyletic clade within this cluster.Peer reviewe

    Conserving Freshwater Biodiversity in an African Subtropical Wetland: South Africa’s Lower Phongolo River and Floodplain

    Get PDF
    Freshwater biodiversity is under constant threat from a range of anthropogenic stressors. Using South Africa’s Phongolo River and floodplain (PRF) as a study case, the aim of this chapter is to provide an overview of the conservation and management of freshwater biodiversity in a highly diverse subtropical ecosystem. The PRF is the largest floodplain system in South Africa which is severely threatened by irregularly controlled flood releases from a large upstream dam, prolonged drought, deteriorating water quality, organic pollutants and the increasing dependence of the local communities. Based on a decade of survey of the PRF conducted from 2010 to 2020, this chapter highlights the current diversity of aquatic organisms (invertebrates, fishes, frogs and their parasitic fauna), followed by an overview of their biological and physical stressors. The current challenges in the management of the aquatic biodiversity of this region and a way forward to conservation strategies are also addressed in this chapter

    Brazilian cave heritage under siege

    Get PDF
    info:eu-repo/semantics/publishe
    corecore