25 research outputs found

    Biomechanical Consequences of Rapid Evolution in the Polar Bear Lineage

    Get PDF
    The polar bear is the only living ursid with a fully carnivorous diet. Despite a number of well-documented craniodental adaptations for a diet of seal flesh and blubber, molecular and paleontological data indicate that this morphologically distinct species evolved less than a million years ago from the omnivorous brown bear. To better understand the evolution of this dietary specialization, we used phylogenetic tests to estimate the rate of morphological specialization in polar bears. We then used finite element analysis (FEA) to compare the limits of feeding performance in the polar bear skull to that of the phylogenetically and geographically close brown bear. Results indicate that extremely rapid evolution of semi-aquatic adaptations and dietary specialization in the polar bear lineage produced a cranial morphology that is weaker than that of brown bears and less suited to processing tough omnivorous or herbivorous diets. Our results suggest that continuation of current climate trends could affect polar bears by not only eliminating their primary food source, but also through competition with northward advancing, generalized brown populations for resources that they are ill-equipped to utilize

    COVID-19 stressors and health behaviors. A multilevel longitudinal study across 86 countries

    Get PDF
    Anxiety associated with the COVID-19 pandemic and home confinement has been associated with adverse health behaviors, such as unhealthy eating, smoking, and drinking. However, most studies have been limited by regional sampling, which precludes the examination of behavioral consequences associated with the pandemic at a global level. Further, few studies operationalized pandemic-related stressors to enable the investigation of the impact of different types of stressors on health outcomes. This study examined the association between perceived risk of COVID-19 infection and economic burden of COVID-19 with health-promoting and health-damaging behaviors using data from the PsyCorona Study: an international, longitudinal online study of psychological and behavioral correlates of COVID-19. Analyses utilized data from 7,402 participants from 86 countries across three waves of assessment between May 16 and June 13, 2020. Participants completed self-report measures of COVID-19 infection risk, COVID-19-related economic burden, physical exercise, diet quality, cigarette smoking, sleep quality, and binge drinking. Multilevel structural equation modeling analyses showed that across three time points, perceived economic burden was associated with reduced diet quality and sleep quality, as well as increased smoking. Diet quality and sleep quality were lowest among respondents who perceived high COVID-19 infection risk combined with high economic burden. Neither binge drinking nor exercise were associated with perceived COVID-19 infection risk, economic burden, or their interaction. Findings point to the value of developing interventions to address COVID-related stressors, which have an impact on health behaviors that, in turn, may 111 influence vulnerability to COVID-19 and other health outcomes

    The Women's Trade Union League: Labor, Suffrage, and Sisterhood

    Full text link
    1_lx0w8ev

    Junco hyemalis Bone Microstructure

    No full text

    Quasi-steady state aerodynamics of the cheetah tail

    No full text
    During high-speed pursuit of prey, the cheetah (Acinonyx jubatus) has been observed to swing its tail while manoeuvring (e.g. turning or braking) but the effect of these complex motions is not well understood. This study demonstrates the potential of the cheetah's long, furry tail to impart torques and forces on the body as a result of aerodynamic effects, in addition to the well-known inertial effects. The first-order aerodynamic forces on the tail are quantified through wind tunnel testing and it is observed that the fur nearly doubles the effective frontal area of the tail without much mass penalty. Simple dynamic models provide insight into manoeuvrability via simulation of pitch, roll and yaw tail motion primitives. The inertial and quasi-steady state aerodynamic effects of tail actuation are quantified and compared by calculating the angular impulse imparted onto the cheetah's body and its shown aerodynamic effects contribute to the tail's angular impulse, especially at the highest forward velocities
    corecore