13 research outputs found

    The MeerKAT Fornax Survey

    Get PDF
    We present the science case and observations plan of the MeerKAT Fornax Survey, an HI and radio continuum survey of the Fornax galaxy cluster to be carried out with the SKA precursor MeerKAT. Fornax is the second most massive cluster within 20 Mpc and the largest nearby cluster in the southern hemisphere. Its low X-ray luminosity makes it representative of the environment where most galaxies live and where substantial galaxy evolution takes place. Fornax's ongoing growth makes it an excellent laboratory for studying the assembly of clusters, the physics of gas accretion and stripping in galaxies falling in the cluster, and the connection between these processes and the neutral medium in the cosmic web. We will observe a region of 12 deg2 reaching a projected distance of 1.5 Mpc from the cluster centre. This will cover a wide range of environment density out to the outskirts of the cluster, where gas-rich in-falling groups are found. We will: study the HI morphology of resolved galaxies down to a column density of a few times 1e+19 cm−2 at a resolution of 1 kpc; measure the slope of the HI mass function down to M(HI) 5e+5 M(sun); and attempt to detect HI in the cosmic web reaching a column density of 1e+18 cm−2 at a resolution of 10 kpc

    The MeerKAT Fornax Survey. III. Ram-pressure stripping of the tidally interacting galaxy NGC 1427A in the Fornax cluster

    Get PDF
    We present MeerKAT Fornax Survey H I observations of NGC 1427A, a blue irregular galaxy with a stellar mass of ∼2 × 109 M⊙ located near the centre of the Fornax galaxy cluster. Thanks to the excellent resolution (1–6 kpc spatially, 1.4 km s−1 in velocity) and H I column density sensitivity (∼4 × 1019 to ∼1018 cm−2 depending on resolution), our data deliver new insights on the long-debated interaction of this galaxy with the cluster environment. We confirm the presence of a broad, one-sided, starless H I tail stretching from the outer regions of the stellar body and pointing away from the cluster centre. We find the tail to have 50% more H I (4 × 108 M⊙) and to be 3 times longer (70 kpc) than in previous observations. In fact, we detect scattered H I clouds out to 300 kpc from the galaxy in the direction of the tail – possibly the most ancient remnant of the passage of NGC 1427A through the intracluster medium of Fornax. Both the velocity gradient along the H I tail and the peculiar kinematics of H I in the outer region of the stellar body are consistent with the effect of ram pressure given the line-of-sight motion of the galaxy within the cluster. However, several properties cannot be explained solely by ram pressure and suggest an ongoing tidal interaction. This includes: the close match between dense H I and stars within the disturbed stellar body; the abundant kinematically anomalous H I; and the inversion of the H I velocity gradient near the base of the H I tail. We rule out an interaction with the cluster tidal field, and conclude that NGC 1427A is the result of a high-speed galaxy encounter or of a merger started at least 300 Myr ago, where ram pressure shapes the distribution and kinematics of the H I in the perturbed outer stellar body and in the tidal tails

    The MeerKAT Fornax Survey. I. Survey description and first evidence of ram pressure in the Fornax galaxy cluster

    Get PDF
    The MeerKAT Fornax Survey maps the distribution and kinematics of atomic neutral hydrogen gas (HI) in the nearby Fornax galaxy cluster using the MeerKAT telescope. The 12 deg^2 survey footprint covers the central region of the cluster out to ~ Rvir and stretches out to ~ 2 Rvir towards south west to include the NGC 1316 galaxy group. The HI column density sensitivity (3 sigma over 25 km/s) ranges from 5e+19/cm^2 at a resolution of ~ 10" (~ 1 kpc at the 20 Mpc distance of Fornax) down to ~ 1e+18/cm^2 at ~ 1' (~ 6 kpc), and slightly below this level at the lowest resolution of ~ 100" (~ 10 kpc). The HI mass sensitivity (3 sigma over 50 km/s) is 6e+5 Msun. The HI velocity resolution is 1.4 km/s. In this paper we describe the survey design and HI data processing, and we present a sample of six galaxies with long, one-sided, star-less HI tails (of which only one was previously known) radially oriented within the cluster and with measurable internal velocity gradients. We argue that the joint properties of the HI tails represent the first unambiguous evidence of ram pressure shaping the distribution of HI in the Fornax cluster. The disturbed optical morphology of all host galaxies supports the idea that the tails consist of HI initially pulled out of the galaxies' stellar body by tidal forces. Ram pressure was then able to further displace the weakly bound HI and give the tails their present direction, length and velocity gradient.Comment: Astronomy & Astrophysics, accepted. Data available at the MeerKAT Fornax Survey website https://sites.google.com/inaf.it/meerkatfornaxsurve

    An overview of the MHONGOOSE survey: Observing nearby galaxies with MeerKAT

    Get PDF
    MHONGOOSE is a deep survey of the neutral hydrogen distribution in a representative sample of 30 nearby disk and dwarf galaxies with HI masses from 10^6 to ~10^{11} M_sun, and luminosities from M_R ~ -12 to M_R ~ -22. The sample is selected to uniformly cover the available range in log(M_HI). Our extremely deep observations, down to HI column density limits of well below 10^{18} cm^{-2} - or a few hundred times fainter than the typical HI disks in galaxies - will directly detect the effects of cold accretion from the intergalactic medium and the links with the cosmic web. These observations will be the first ever to probe the very low-column density neutral gas in galaxies at these high resolutions. Combination with data at other wavelengths, most of it already available, will enable accurate modelling of the properties and evolution of the mass components in these galaxies and link these with the effects of environment, dark matter distribution, and other fundamental properties such as halo mass and angular momentum. MHONGOOSE can already start addressing some of the SKA-1 science goals and will provide a comprehensive inventory of the processes driving the transformation and evolution of galaxies in the nearby universe at high resolution and over 5 orders of magnitude in column density. It will be a Nearby Galaxies Legacy Survey that will be unsurpassed until the advent of the SKA, and can serve as a highly visible, lasting statement of MeerKAT's capabilities

    The Atacama Cosmology Telescope: A Catalog of >4000 Sunyaev–Zel’dovich Galaxy Clusters

    Get PDF
    We present a catalog of 4195 optically confirmed Sunyaev–Zel'dovich (SZ) selected galaxy clusters detected with signal-to-noise ratio >4 in 13,211 deg2 of sky surveyed by the Atacama Cosmology Telescope (ACT). Cluster candidates were selected by applying a multifrequency matched filter to 98 and 150 GHz maps constructed from ACT observations obtained from 2008 to 2018 and confirmed using deep, wide-area optical surveys. The clusters span the redshift range 0.04 1 clusters, and a total of 868 systems are new discoveries. Assuming an SZ signal versus mass-scaling relation calibrated from X-ray observations, the sample has a 90% completeness mass limit of M500c > 3.8 × 1014 M⊙, evaluated at z = 0.5, for clusters detected at signal-to-noise ratio >5 in maps filtered at an angular scale of 2farcm4. The survey has a large overlap with deep optical weak-lensing surveys that are being used to calibrate the SZ signal mass-scaling relation, such as the Dark Energy Survey (4566 deg2), the Hyper Suprime-Cam Subaru Strategic Program (469 deg2), and the Kilo Degree Survey (825 deg2). We highlight some noteworthy objects in the sample, including potentially projected systems, clusters with strong lensing features, clusters with active central galaxies or star formation, and systems of multiple clusters that may be physically associated. The cluster catalog will be a useful resource for future cosmological analyses and studying the evolution of the intracluster medium and galaxies in massive clusters over the past 10 Gyr

    The MeerKAT Galaxy Cluster Legacy Survey: I. Survey overview and highlights

    Get PDF
    Please abstract in the article.The South African Radio Astronomy Observatory (SARAO), the National Research Foundation (NRF), the National Radio Astronomy Observatory, US National Science Foundation, the South African Research Chairs Initiative of the DSI/NRF, the SARAO HCD programme, the South African Research Chairs Initiative of the Department of Science and Innovation.http://www.aanda.orghj2022Physic
    corecore