38 research outputs found

    Responses of Auditory Nerve and Anteroventral Cochlear Nucleus Fibers to Broadband and Narrowband Noise: Implications for the Sensitivity to Interaural Delays

    Get PDF
    The quality of temporal coding of sound waveforms in the monaural afferents that converge on binaural neurons in the brainstem limits the sensitivity to temporal differences at the two ears. The anteroventral cochlear nucleus (AVCN) houses the cells that project to the binaural nuclei, which are known to have enhanced temporal coding of low-frequency sounds relative to auditory nerve (AN) fibers. We applied a coincidence analysis within the framework of detection theory to investigate the extent to which AVCN processing affects interaural time delay (ITD) sensitivity. Using monaural spike trains to a 1-s broadband or narrowband noise token, we emulated the binaural task of ITD discrimination and calculated just noticeable differences (jnds). The ITD jnds derived from AVCN neurons were lower than those derived from AN fibers, showing that the enhanced temporal coding in the AVCN improves binaural sensitivity to ITDs. AVCN processing also increased the dynamic range of ITD sensitivity and changed the shape of the frequency dependence of ITD sensitivity. Bandwidth dependence of ITD jnds from AN as well as AVCN fibers agreed with psychophysical data. These findings demonstrate that monaural preprocessing in the AVCN improves the temporal code in a way that is beneficial for binaural processing and may be crucial in achieving the exquisite sensitivity to ITDs observed in binaural pathways

    Responses to Diotic, Dichotic, and Alternating Phase Harmonic Stimuli in the Inferior Colliculus of Guinea Pigs

    Get PDF
    Humans perceive a harmonic series as a single auditory object with a pitch equivalent to the fundamental frequency (F0) of the series. When harmonics are presented to alternate ears, the repetition rate of the waveform at each ear doubles. If the harmonics are resolved, then the pitch perceived is still equivalent to F0, suggesting the stimulus is binaurally integrated before pitch is processed. However, unresolved harmonics give rise to the doubling of pitch which would be expected from monaural processing (Bernstein and Oxenham, J. Acoust. Soc. Am., 113:3323–3334, 2003). We used similar stimuli to record responses of multi-unit clusters in the central nucleus of the inferior colliculus (IC) of anesthetized guinea pigs (urethane supplemented by fentanyl/fluanisone) to determine the nature of the representation of harmonic stimuli and to what extent there was binaural integration. We examined both the temporal and rate-tuning of IC clusters and found no evidence for binaural integration. Stimuli comprised all harmonics below 10 kHz with fundamental frequencies (F0) from 50 to 400 Hz in half-octave steps. In diotic conditions, all the harmonics were presented to both ears. In dichotic conditions, odd harmonics were presented to one ear and even harmonics to the other. Neural characteristic frequencies (CF, n = 85) were from 0.2 to 14.7 kHz; 29 had CFs below 1 kHz. The majority of clusters responded predominantly to the contralateral ear, with the dominance of the contralateral ear increasing with CF. With diotic stimuli, over half of the clusters (58%) had peaked firing rate vs. F0 functions. The most common peak F0 was 141 Hz. Almost all (98%) clusters phase locked diotically to an F0 of 50 Hz, and approximately 40% of clusters still phase locked significantly (Rayleigh coefficient >13.8) at the highest F0 tested (400 Hz). These results are consistent with the previous reports of responses to amplitude-modulated stimuli. Clusters phase locked significantly at a frequency equal to F0 for contralateral and diotic stimuli but at 2F0 for dichotic stimuli. We interpret these data as responses following the envelope periodicity in monaural channels rather than as a binaurally integrated representation

    Multidimensional Characterization and Differentiation of Neurons in the Anteroventral Cochlear Nucleus

    Get PDF
    Multiple parallel auditory pathways ascend from the cochlear nucleus. It is generally accepted that the origin of these pathways are distinct groups of neurons differing in their anatomical and physiological properties. In extracellular in vivo recordings these neurons are typically classified on the basis of their peri-stimulus time histogram. In the present study we reconsider the question of classification of neurons in the anteroventral cochlear nucleus (AVCN) by taking a wider range of response properties into account. The study aims at a better understanding of the AVCN's functional organization and its significance as the source of different ascending auditory pathways. The analyses were based on 223 neurons recorded in the AVCN of the Mongolian gerbil. The range of analysed parameters encompassed spontaneous activity, frequency coding, sound level coding, as well as temporal coding. In order to categorize the unit sample without any presumptions as to the relevance of certain response parameters, hierarchical cluster analysis and additional principal component analysis were employed which both allow a classification on the basis of a multitude of parameters simultaneously. Even with the presently considered wider range of parameters, high number of neurons and more advanced analytical methods, no clear boundaries emerged which would separate the neurons based on their physiology. At the current resolution of the analysis, we therefore conclude that the AVCN units more likely constitute a multi-dimensional continuum with different physiological characteristics manifested at different poles. However, more complex stimuli could be useful to uncover physiological differences in future studies

    Computational science for energy research

    Full text link
    Computational science complements theory and experiments. It can deliver knowledge and understanding in application areas where the latter two can not. Computational science is particularly important for the simulation of various energy-related processes, ranging from classical energy processes as combustion and subsurface oil-reservoir flows to more modern processes as wind-farm aerodynamics, photovoltaics and – very challenging from a computational perspective – tokamak-plasma physics. The current special issue finds its origin in the Second Frontiers in Computational Physics Conference, centered around the theme energy, and held 3–5 June 2015 in Zürich, Switzerland. The conference provided a forum for exchanging knowledge and expertise on advanced computational methods for the computer simulation of various energy processes. We hope that the resulting special issue will prove to be informative and useful for researchers interested in computational science for energy research. We thank all people who have helped us in preparing this special issue: the reviewers, the technical editors of the Journal of Computational Physics, and most of all the authors
    corecore