1,362 research outputs found

    Review of Abnormal Self-Knowledge in Major Depressive Disorder

    Get PDF
    Background: Major depressive disorder (MDD) is an affective disorder that is harmful to both physical and mental health. Abnormal self-knowledge, which refers to abnormal judgments about oneself, is a core symptom of depression. However, little research has summarized how and why patients with MDD differ from healthy individuals in terms of self-knowledge.Objective: To gain a better understanding of MDD, we reviewed previous studies that focused on the behavioral and neurological changes of self-knowledge in this illness.Main Findings: On the behavioral level, depressed individuals exhibited negative self-knowledge in an explicit way, while more heterogeneous patterns were reported in implicit results. On the neurological level, depressed individuals, as compared with non-depressed controls, showed abnormal self-referential processing in both early perception and higher cognitive processing phases during the Self-Referential Encoding Task. Furthermore, fMRI studies have reported aberrant activity in the medial prefrontal cortex area for negative self-related items in depression. These results revealed several behavioral features and brain mechanisms underlying abnormal self-knowledge in depression.Future Studies: The neural mechanism of implicit self-knowledge in MDD remains unclear. Future research should examine the importance of others' attitudes on the self-concept of individuals with MDD, and whether abnormal self-views may be modified through cognitive or pharmacological approaches. In addition, differences in abnormal self-knowledge due to genetic variation between depressed and non-depressed populations remain unconfirmed. Importantly, it remains unknown whether abnormal self-knowledge could be used as a specific marker to distinguish healthy individuals from those with MDD.Conclusion: This review extends our understanding of the relationship between self-knowledge and depression by indicating several abnormalities among individuals with MDD and those who are at risk for this illness

    Local Differentially Private Heavy Hitter Detection in Data Streams with Bounded Memory

    Full text link
    Top-kk frequent items detection is a fundamental task in data stream mining. Many promising solutions are proposed to improve memory efficiency while still maintaining high accuracy for detecting the Top-kk items. Despite the memory efficiency concern, the users could suffer from privacy loss if participating in the task without proper protection, since their contributed local data streams may continually leak sensitive individual information. However, most existing works solely focus on addressing either the memory-efficiency problem or the privacy concerns but seldom jointly, which cannot achieve a satisfactory tradeoff between memory efficiency, privacy protection, and detection accuracy. In this paper, we present a novel framework HG-LDP to achieve accurate Top-kk item detection at bounded memory expense, while providing rigorous local differential privacy (LDP) protection. Specifically, we identify two key challenges naturally arising in the task, which reveal that directly applying existing LDP techniques will lead to an inferior ``accuracy-privacy-memory efficiency'' tradeoff. Therefore, we instantiate three advanced schemes under the framework by designing novel LDP randomization methods, which address the hurdles caused by the large size of the item domain and by the limited space of the memory. We conduct comprehensive experiments on both synthetic and real-world datasets to show that the proposed advanced schemes achieve a superior ``accuracy-privacy-memory efficiency'' tradeoff, saving 2300×2300\times memory over baseline methods when the item domain size is 41,27041,270. Our code is open-sourced via the link

    The active oxygen species promoted catalytic oxidation of 5-hydroxymethyl-2-furfural on facet-specific Pt nanocrystals

    Get PDF
    This work was supported by Natural Science Foundation of Tianjin (Grant No. 17JCYBJC22600) and the Fundamental Research Funds for the Central Universities.The aerobic oxidation of alcohols and aldehydes over noble metal catalysts is a critical reaction for the catalytic conversion of carbohydrates into value-added chemicals from biomass. However, to fully understand the reaction mechanism, in particular the role of O2 and the generated active oxygen species in these reactions is still a challenging target. In the present work, the sub-10 nm Pt nanocrystals with cubic (Pt-NCs), octahedral (Pt-NOs) and spherical (Pt-NSs) morphologies were synthesized and used as catalysts in aerobic oxidation of HMF. Through experimental and computational investigations, the facet-dependent O2 conversion pathway and catalytic oxidation performance were discussed. The molecular O2 tends to be dissoci-ated to generate •OH on Pt(100) surface, but prefers to be reduced to •O2- on Pt(111) surface. Moreover, Pt-NCs enclosed by the {100} facets exhibited significantly enhanced catalytic activity than Pt-NOs enclosed by the {111} facets and Pt-NSs, in particular for alcohol oxidation step. Based on the experimental data and density functional theory (DFT) calculations, an active oxygen species promoted dehydrogenation mechanism for aerobic oxidation of HMF was proposed. The dehydrogena-tion of alcohol group is more favourable on the Pt(100) surface with an assistance of •OH, which are the dominant active oxygen species on the Pt(100) surface. We anticipate that this work would provide a new insight into the role of active oxy-gen species in aerobic oxidation of alcohols and aldehydes over noble metal catalysts.PostprintPeer reviewe

    Assessment of radiation exposure and public health before and after the operation of Sanmen nuclear power plant

    Get PDF
    IntroductionSanmen nuclear power plant (SNPP) operates the first advanced passive (AP1000) nuclear power unit in China.MethodsTo assess the radiological impacts of SNPP operation on the surrounding environment and the public health, annual effective dose (AED) and excess risk (ER) were estimated based on continuous radioactivity monitoring in drinking water and ambient dose before and after its operation during 2014–2021. In addition, the residents' cancer incidence was further analyzed through authorized health data collection.ResultsThe results showed that the gross α and gross β radioactivity in all types of drinking water were ranged from 0.008 to 0.017 Bq/L and 0.032 to 0.112 Bq/L, respectively. The cumulative ambient dose in Sanmen county ranged from 0.254 to 0.460 mSv/y, with an average of 0.354 ± 0.075 mSv/y. There is no statistical difference in drinking water radioactivity and ambient dose before and after the operation of SNPP according to Mann–Whitney U test. The Mann-Kendall test also indicates there is neither increasing nor decreasing trend during the period from 2014 to 2021. The age-dependent annual effective doses due to the ingestion of drinking water or exposure to the outdoor ambient environment are lower than the recommended threshold of 0.1 mSv/y. The incidence of cancer (include leukemia and thyroid cancer) in the population around SNPP is slightly higher than that in other areas, while it is still in a stable state characterized by annual percentage changes.DiscussionThe current comprehensive results show that the operation of SNPP has so far no evident radiological impact on the surrounding environment and public health, but continued monitoring is still needed in the future

    Supplemental Information 1: Accession numbers for BrFLC paralogs

    Get PDF
    Understanding the genetic basis of natural phenotypic variation is of great importance, particularly since selection can act on this variation to cause evolution. We examined expression and allelic variation in candidate flowering time loci in Brassica rapa plants derived from a natural population and showing a broad range in the timing of first flowering. The loci of interest were orthologs of the Arabidopsis genes FLC and SOC1 (BrFLC and BrSOC1, respectively), which in Arabidopsis play a central role in the flowering time regulatory network, with FLC repressing and SOC1 promoting flowering. In B. rapa, there are four copies of FLC and three of SOC1. Plants were grown in controlled conditions in the lab. Comparisons were made between plants that flowered the earliest and latest, with the difference in average flowering time between these groups ∼30 days. As expected, we found that total expression of BrSOC1 paralogs was significantly greater in early than in late flowering plants. Paralog-specific primers showed that expression was greater in early flowering plants in the BrSOC1 paralogs Br004928, Br00393 and Br009324, although the difference was not significant in Br009324. Thus expression of at least 2 of the 3 BrSOC1 orthologs is consistent with their predicted role in flowering time in this natural population. Sequences of the promoter regions of the BrSOC1 orthologs were variable, but there was no association between allelic variation at these loci and flowering time variation. For the BrFLC orthologs, expression varied over time, but did not differ between the early and late flowering plants. The coding regions, promoter regions and introns of these genes were generally invariant. Thus the BrFLC orthologs do not appear to influence flowering time in this population. Overall, the results suggest that even for a trait like flowering time that is controlled by a very well described genetic regulatory network, understanding the underlying genetic basis of natural variation in such a quantitative trait is challenging

    Low-Temperature Preparation of Superparamagnetic CoFe2O4 Microspheres with High Saturation Magnetization

    Get PDF
    Based on a low-temperature route, monodispersed CoFe2O4 microspheres (MSs) were fabricated through aggregation of primary nanoparticles. The microstructural and magnetic characteristics of the as-prepared MSs were characterized by X-ray diffraction/photoelectron spectroscopy, scanning/transmitting electron microscopy, and vibrating sample magnetometer. The results indicate that the diameters of CoFe2O4 MSs with narrow size distribution can be tuned from over 200 to ~330 nm. Magnetic measurements reveal these MSs exhibit superparamagnetic behavior at room temperature with high saturation magnetization. Furthermore, the mechanism of formation of the monodispersed CoFe2O4 MSs was discussed on the basis of time-dependent experiments, in which hydrophilic PVP plays a crucial role

    Aggregation-Induced Emission (AIE), Life and Health

    Get PDF
    Light has profoundly impacted modern medicine and healthcare, with numerous luminescent agents and imaging techniques currently being used to assess health and treat diseases. As an emerging concept in luminescence, aggregation-induced emission (AIE) has shown great potential in biological applications due to its advantages in terms of brightness, biocompatibility, photostability, and positive correlation with concentration. This review provides a comprehensive summary of AIE luminogens applied in imaging of biological structure and dynamic physiological processes, disease diagnosis and treatment, and detection and monitoring of specific analytes, followed by representative works. Discussions on critical issues and perspectives on future directions are also included. This review aims to stimulate the interest of researchers from different fields, including chemistry, biology, materials science, medicine, etc., thus promoting the development of AIE in the fields of life and health

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration
    • …
    corecore