193 research outputs found

    Elevated DNA methylation across a 48-kb region spanning the HOXA gene cluster is associated with Alzheimer's disease neuropathology

    Get PDF
    Introduction Alzheimer's disease is a neurodegenerative disorder that is hypothesized to involve epigenetic dysregulation of gene expression in the brain. Methods We performed an epigenome-wide association study to identify differential DNA methylation associated with neuropathology in prefrontal cortex and superior temporal gyrus samples from 147 individuals, replicating our findings in two independent data sets (N = 117 and 740). Results We identify elevated DNA methylation associated with neuropathology across a 48-kb region spanning 208 CpG sites within the HOXA gene cluster. A meta-analysis of the top-ranked probe within the HOXA3 gene (cg22962123) highlighted significant hypermethylation across all three cohorts (P = 3.11 × 10−18). Discussion We present robust evidence for elevated DNA methylation associated with Alzheimer's disease neuropathology spanning the HOXA gene cluster on chromosome 7. These data add to the growing evidence highlighting a role for epigenetic variation in Alzheimer's disease, implicating the HOX gene family as a target for future investigation

    Detection of Gamma-Ray Emission from the Starburst Galaxies M82 and NGC 253 with the Large Area Telescope on Fermi

    Full text link
    We report the detection of high-energy gamma-ray emission from two starburst galaxies using data obtained with the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. Steady point-like emission above 200 MeV has been detected at significance levels of 6.8 sigma and 4.8 sigma respectively, from sources positionally coincident with locations of the starburst galaxies M82 and NGC 253. The total fluxes of the sources are consistent with gamma-ray emission originating from the interaction of cosmic rays with local interstellar gas and radiation fields and constitute evidence for a link between massive star formation and gamma-ray emission in star-forming galaxies.Comment: Submitted to ApJ Letter

    Fermi Gamma-ray Imaging of a Radio Galaxy

    Get PDF
    The Fermi Gamma-ray Space Telescope has detected the gamma-ray glow emanating from the giant radio lobes of the radio galaxy Centaurus A. The resolved gamma-ray image shows the lobes clearly separated from the central active source. In contrast to all other active galaxies detected so far in high-energy gamma-rays, the lobe flux constitutes a considerable portion (>1/2) of the total source emission. The gamma-ray emission from the lobes is interpreted as inverse Compton scattered relic radiation from the cosmic microwave background (CMB), with additional contribution at higher energies from the infrared-to-optical extragalactic background light (EBL). These measurements provide gamma-ray constraints on the magnetic field and particle energy content in radio galaxy lobes, and a promising method to probe the cosmic relic photon fields.Comment: 27 pages, includes Supplementary Online Material; corresponding authors: C.C. Cheung, Y. Fukazawa, J. Knodlseder, L. Stawar

    Fermi Large Area Telescope observations of PSR J1836+5925

    Full text link
    The discovery of the gamma-ray pulsar PSR J1836+5925, powering the formerly unidentified EGRET source 3EG J1835+5918, was one of the early accomplishments of the Fermi Large Area Telescope (LAT). Sitting 25 degrees off the Galactic plane, PSR J1836+5925 is a 173 ms pulsar with a characteristic age of 1.8 million years, a spindown luminosity of 1.1×1034\times10^{34} erg s1^{-1}, and a large off-peak emission component, making it quite unusual among the known gamma-ray pulsar population. We present an analysis of one year of LAT data, including an updated timing solution, detailed spectral results and a long-term light curve showing no indication of variability. No evidence for a surrounding pulsar wind nebula is seen and the spectral characteristics of the off-peak emission indicate it is likely magnetospheric. Analysis of recent XMM observations of the X-ray counterpart yields a detailed characterization of its spectrum, which, like Geminga, is consistent with that of a neutron star showing evidence for both magnetospheric and thermal emission.Comment: Accepted to Astrophysical Journa

    A change in the optical polarization associated with a gamma-ray flare in the blazar 3C 279

    Get PDF
    It is widely accepted that strong and variable radiation detected over all accessible energy bands in a number of active galaxies arises from a relativistic, Doppler-boosted jet pointing close to our line of sight. The size of the emitting zone and the location of this region relative to the central supermassive black hole are, however, poorly known, with estimates ranging from light-hours to a light-year or more. Here we report the coincidence of a gamma-ray flare with a dramatic change of optical polarization angle. This provides evidence for co-spatiality of optical and gamma-ray emission regions and indicates a highly ordered jet magnetic field. The results also require a non-axisymmetric structure of the emission zone, implying a curved trajectory for the emitting material within the jet, with the dissipation region located at a considerable distance from the black hole, at about 10^5 gravitational radii.Comment: Published in Nature issued on 18 February 2010. Corresponding authors: Masaaki Hayashida and Greg Madejsk

    Molecular evidence for increased regulatory conservation during metamorphosis, and against deleterious cascading effects of hybrid breakdown in Drosophila

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Speculation regarding the importance of changes in gene regulation in determining major phylogenetic patterns continues to accrue, despite a lack of broad-scale comparative studies examining how patterns of gene expression vary during development. Comparative transcriptional profiling of adult interspecific hybrids and their parental species has uncovered widespread divergence of the mechanisms controlling gene regulation, revealing incompatibilities that are masked in comparisons between the pure species. However, this has prompted the suggestion that misexpression in adult hybrids results from the downstream cascading effects of a subset of genes improperly regulated in early development.</p> <p>Results</p> <p>We sought to determine how gene expression diverges over development, as well as test the cascade hypothesis, by profiling expression in males of <it>Drosophila melanogaster</it>, <it>D. sechellia</it>, and <it>D. simulans</it>, as well as the <it>D. simulans </it>(♀) × <it>D. sechellia </it>(♂) male F1 hybrids, at four different developmental time points (3rd instar larval, early pupal, late pupal, and newly-emerged adult). Contrary to the cascade model of misexpression, we find that there is considerable stage-specific autonomy of regulatory breakdown in hybrids, with the larval and adult stages showing significantly more hybrid misexpression as compared to the pupal stage. However, comparisons between pure species indicate that genes expressed during earlier stages of development tend to be more conserved in terms of their level of expression than those expressed during later stages, suggesting that while Von Baer's famous law applies at both the level of nucleotide sequence and expression, it may not apply necessarily to the underlying overall regulatory network, which appears to diverge over the course of ontogeny and which can only be ascertained by combining divergent genomes in species hybrids.</p> <p>Conclusion</p> <p>Our results suggest that complex integration of regulatory circuits during morphogenesis may lead to it being more refractory to divergence of underlying gene regulatory mechanisms - more than that suggested by the conservation of gene expression levels between species during earlier stages. This provides support for a 'developmental hourglass' model of divergence of gene expression in <it>Drosophila </it>resulting in a highly conserved pupal stage.</p

    The relationship of systemic markers of renal function and vascular function with retinal blood vessel responses

    Get PDF
    Purpose: To test the hypothesis of a significant relationship between systemic markers of renal and vascular function (processes linked to cardiovascular disease and its development) and retinal microvascular function in diabetes and/or cardiovascular disease.Methods: Ocular microcirculatory function was measured in 116 patients with diabetes and/or cardiovascular disease using static and continuous retinal vessel responses to three cycles of flickering light. Endothelial function was evaluated by von Willebrand factor (vWf), endothelial microparticles and soluble E selectin, renal function by serum creatinine, creatinine clearance and estimated glomerular filtration rate (eGFR). HbA1c was used as a control index.Results: Central retinal vein equivalence and venous maximum dilation to flicker were linked to HbA1c (both p<0.05). Arterial reaction time was linked to serum creatinine (p=0.036) and eGFR (p=0.039), venous reaction time was linked to creatinine clearance (p=0.018). Creatinine clearance and eGFR were linked to arterial maximum dilatation (p<0.001 and p=0.003 respectively) and the dilatation amplitude (p=0.038 and p=0.048 respectively) responses in the third flicker cycle. Of venous responses to the first flicker cycle, HbA1c was linked to the maximum dilation response (p=0.004) and dilatation amplitude (p=0.017), vWf was linked to the maximum constriction response (p=0.016), and creatinine clearance to the baseline diameter fluctuation (p=0.029). In the second flicker cycle, dilatation amplitude was linked to serum creatinine (p=0.022). Conclusions: Several retinal blood vessel responses to flickering light are linked to glycaemia and renal function, but only one index is linked to endothelial function. Renal function must be considered when interpreting retinal vessel responses

    Zelda Binding in the Early Drosophila melanogaster Embryo Marks Regions Subsequently Activated at the Maternal-to-Zygotic Transition

    Get PDF
    The earliest stages of development in most metazoans are driven by maternally deposited proteins and mRNAs, with widespread transcriptional activation of the zygotic genome occurring hours after fertilization, at a period known as the maternal-to-zygotic transition (MZT). In Drosophila, the MZT is preceded by the transcription of a small number of genes that initiate sex determination, patterning, and other early developmental processes; and the zinc-finger protein Zelda (ZLD) plays a key role in their transcriptional activation. To better understand the mechanisms of ZLD activation and the range of its targets, we used chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-Seq) to map regions bound by ZLD before (mitotic cycle 8), during (mitotic cycle 13), and after (late mitotic cycle 14) the MZT. Although only a handful of genes are transcribed prior to mitotic cycle 10, we identified thousands of regions bound by ZLD in cycle 8 embryos, most of which remain bound through mitotic cycle 14. As expected, early ZLD-bound regions include the promoters and enhancers of genes transcribed at this early stage. However, we also observed ZLD bound at cycle 8 to the promoters of roughly a thousand genes whose first transcription does not occur until the MZT and to virtually all of the thousands of known and presumed enhancers bound at cycle 14 by transcription factors that regulate patterned gene activation during the MZT. The association between early ZLD binding and MZT activity is so strong that ZLD binding alone can be used to identify active promoters and regulatory sequences with high specificity and selectivity. This strong early association of ZLD with regions not active until the MZT suggests that ZLD is not only required for the earliest wave of transcription but also plays a major role in activating the genome at the MZT

    The 5-HTTLPR polymorphism of the serotonin transporter gene and short term behavioral response to methylphenidate in children with ADHD

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Animal models of ADHD suggest that the paradoxical calming effect of methylphenidate on motor activity could be mediated through its action on serotonin transmission. In this study, we have investigated the relationship between the 5-HTTLPR polymorphism in the serotonin transporter gene (<it>SLC6A4</it>) and the response of ADHD relevant behaviors with methylphenidate treatment.</p> <p>Methods</p> <p>Patients between ages 6-12 (n = 157) were assessed with regard to their behavioral response to methylphenidate (0.5 mg/kg/day) using a 2-week prospective within-subject, placebo-controlled (crossover) trial. The children were then genotyped with regard to the triallelic 5-HTTLPR polymorphism in the <it>SLC6A4 </it>gene. Main outcome measure: Conners' Global Index for parents (CGI-Parents) and teachers (CGI-Teachers) at baseline and at the end of each week of treatment with placebo and methylphenidate. For both outcome measurements, we used a mixed model analysis of variance to determine gene, treatment and gene × treatment interaction effects.</p> <p>Results</p> <p>Mixed model analysis of variance revealed a gene × treatment interaction for CGI-Parents but not for CGI-Teachers. Children homozygous for the lower expressing alleles (<it>s+l<sub>G </sub>= s'</it>) responded well to placebo and did not derive additional improvement with methylphenidate compared to children carrying a higher expressing allele (<it>l<sub>A</sub></it>). No genotype main effects on either CGI-Parents or CGI-teachers were observed.</p> <p>Conclusions</p> <p>A double blind placebo-controlled design was used to assess the behavioral effects of methylphenidate in relation to the triallelic 5-HTTLPR polymorphism of the <it>SLC6A4 </it>gene in children with ADHD. This polymorphism appears to modulate the behavioral response to methylphenidate in children with ADHD as assessed in the home environment by parents. Further investigation is needed to assess the clinical implications of this finding.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov NCT00483106</p
    corecore