38 research outputs found

    Modelling the descent of nitric oxide during the elevated stratopause event of January 2013

    Get PDF
    Using simulations with a whole-atmosphere chemistry-climate model nudged by meteorological analyses, global satellite observations of nitrogen oxide (NO) and water vapour by the Sub-Millimetre Radiometer instrument (SMR), of temperature by the Microwave Limb Sounder (MLS), as well as local radar observations, this study examines the recent major stratospheric sudden warming accompanied by an elevated stratopause event (ESE) that occurred in January 2013. We examine dynamical processes during the ESE, including the role of planetary wave, gravity wave and tidal forcing on the initiation of the descent in the mesosphere-lower thermosphere (MLT) and its continuation throughout the mesosphere and stratosphere, as well as the impact of model eddy diffusion. We analyse the transport of NO and find the model underestimates the large descent of NO compared to SMR observations. We demonstrate that the discrepancy arises abruptly in the MLT region at a time when the resolved wave forcing and the planetary wave activity increase, just before the elevated stratopause reforms. The discrepancy persists despite doubling the model eddy diffusion. While the simulations reproduce an enhancement of the semi-diurnal tide following the onset of the 2013 SSW, corroborating new meteor radar observations at high northern latitudes over Trondheim (63.4∘^{\circ}N), the modelled tidal contribution to the forcing of the mean meridional circulation and to the descent is a small portion of the resolved wave forcing, and lags it by about ten days

    Descent from the polar mesosphere and anomalously high stratopause observed in 8 years of water vapor and temperature satellite observations by the Odin Sub-Millimeter Radiometer

    Get PDF
    Using newly analyzed mesospheric water vapor and temperature observations from the Sub-Millimeter Radiometer instrument aboard the Odin research satellite over the period 2001-2009, we present evidence for an anomalously strong descent of dry mesospheric air from the lower mesosphere into the upper stratosphere in the winters of 2004, 2006, and 2009. In the three cases, the descent follows the recovery of the upper stratospheric polar vortex from a major midwinter stratospheric sudden warming. It is also accompanied by the rapid formation of an anomalously warm polar mesospheric layer, i.e., an elevated polar stratopause, near 75 km, and its slower descent to prewarming level (near 1 hPa) over 1.5-2 months. These three winters stand out in the current record of Odin/Sub-Millimeter Radiometer observations started in July 2001

    The role of methane in projections of 21st century stratospheric water vapour

    Get PDF
    Stratospheric water vapour (SWV) is an important component of the Earth’s atmosphere as it affects both radiative balance and the chemistry of the atmosphere. Key processes driving changes in SWV include dehydration of air masses transiting the cold-point tropopause (CPT) and methane oxidation. We use a chemistry–climate model to simulate changes in SWV through the 21st century following the four canonical representative concentration pathways (RCPs). Furthermore, we quantify the contribution that methane oxidation makes to SWV following each of the RCPs. Although the methane contribution to SWV maximizes in the upper stratosphere, modelled SWV trends are found to be driven predominantly by warming of the CPT rather than by increasing methane oxidation. SWV changes by -5 to 60% (depending on the location in the atmosphere and emissions scenario) and increases in the lower stratosphere in all RCPs through the 21st century. Because the lower stratosphere is where water vapour radiative forcing maximizes, SWV’s influence on surface climate is also expected to increase through the 21st century

    On the improved stability of the version 7 MIPAS ozone record

    Get PDF
    The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) was an infrared limb emission spectrometer on the Envisat platform. From 2002 to 2012, it performed pole-to-pole measurements during day and night, producing more than 1000 profiles per day. The European Space Agency (ESA) recently released the new version 7 of Level 1B MIPAS spectra, in which a new set of time-dependent correction coefficients for the nonlinearity in the detector response functions was implemented. This change is expected to reduce the long-term drift of the MIPAS Level 2 data. We evaluate the long-term stability of ozone Level 2 data retrieved from MIPAS v7 Level 1B spectra with the IMK/IAA scientific level 2 processor. For this, we compare MIPAS data with ozone measurements from the Microwave Limb Sounder (MLS) instrument on NASA\u27s Aura satellite, ozonesondes and ground-based lidar instruments. The ozonesondes and lidars alone do not allow us to conclude with enough significance that the new version is more stable than the previous one, but a clear improvement in long-term stability is observed in the satellite-data-based drift analysis. The results of ozonesondes, lidars and satellite drift analysis are consistent: all indicate that the drifts of the new version are less negative/more positive nearly everywhere above 15km. The 10-year MIPAS ozone trends calculated from the old and the new data versions are compared. The new trends are closer to old drift-corrected trends than the old uncorrected trends were. From this, we conclude that the nonlinearity correction performed on Level 1B data is an improvement. These results indicate that MIPAS data are now even more suited for trend studies, alone or as part of a merged data record

    The SPARC water vapour assessment II: comparison of annual, semi-annual and quasi-biennial variations in stratospheric and lower mesospheric water vapour observed from satellites

    Get PDF
    In the framework of the second SPARC (Stratosphere-troposphere Processes And their Role in Climate) water vapour assessment (WAVAS-II), the amplitudes and phases of the annual, semi-annual and quasi-biennial variation in stratospheric and lower mesospheric water were compared using 30 data sets from 13 different satellite instruments. These comparisons aimed to provide a comprehensive overview of the typical uncertainties in the observational database which can be considered in subsequent observational and modelling studies. For the amplitudes, a good agreement of their latitude and altitude distribution was found. Quantitatively there were differences in particular at high latitudes, close to the tropopause and in the lower mesosphere. In these regions, the standard deviation over all data sets typically exceeded 0.2 ppmv for the annual variation and 0.1 ppmv for the semi-annual and quasi-biennial variation. For the phase, larger differences between the data sets were found in the lower mesosphere. Generally the smallest phase uncertainties can be observed in regions where the amplitude of the variability is large. The standard deviations of the phases for all data sets were typically smaller than a month for the annual and semi-annual variation and smaller than 5 months for the quasi-biennial variation. The amplitude and phase differences among the data sets are caused by a combination of factors. In general, differences in the temporal variation of systematic errors and in the observational sampling play a dominant role. In addition, differences in the vertical resolution of the data, the considered time periods and influences of clouds, aerosols as well as non-local thermodynamic equilibrium (NLTE) effects cause differences between the individual data sets

    The SPARC Water Vapor Assessment II: assessment of satellite measurements of upper tropospheric humidity

    Get PDF
    Nineteen limb-viewing data sets (occultation, passive thermal, and UV scattering) and two nadir upper tropospheric humidity (UTH) data sets are intercompared and also compared to frost-point hygrometer balloon sondes. The upper troposphere considered here covers the pressure range from 300-100 hPa. UTH is a challenging measurement, because concentrations vary between 2-1000 ppmv (parts per million by volume), with sharp changes in vertical gradients near the tropopause. Cloudiness in this region also makes the measurement challenging. The atmospheric temperature is also highly variable ranging from 180-250 K. The assessment of satellite-measured UTH is based on coincident comparisons with balloon frost-point hygrometer sondes, multi-month mapped comparisons, zonal mean time series comparisons, and coincident satellite-to-satellite comparisons. While the satellite fields show similar features in maps and time series, quantitatively they can differ by a factor of 2 in concentration, with strong dependencies on the amount of UTH. Additionally, time-lag response-corrected Vaisala RS92 radiosondes are compared to satellites and the frost-point hygrometer measurements. In summary, most satellite data sets reviewed here show on average similar to 30 % agreement amongst themselves and frost-point data but with an additional similar to 30 % variability about the mean bias. The Vaisala RS92 sonde, even with a time-lag correction, shows poor behavior for pressures less than 200 hPa

    The SPARC Water Vapor Assessment II: assessment of satellite measurements of upper tropospheric humidity

    Get PDF
    Nineteen limb-viewing data sets (occultation, passive thermal, and UV scattering) and two nadir upper tropospheric humidity (UTH) data sets are intercompared and also compared to frost-point hygrometer balloon sondes. The upper troposphere considered here covers the pressure range from 300–100 hPa. UTH is a challenging measurement, because concentrations vary between 2–1000 ppmv (parts per million by volume), with sharp changes in vertical gradients near the tropopause. Cloudiness in this region also makes the measurement challenging. The atmospheric temperature is also highly variable ranging from 180–250 K. The assessment of satellite-measured UTH is based on coincident comparisons with balloon frost-point hygrometer sondes, multi-month mapped comparisons, zonal mean time series comparisons, and coincident satellite-to-satellite comparisons. While the satellite fields show similar features in maps and time series, quantitatively they can differ by a factor of 2 in concentration, with strong dependencies on the amount of UTH. Additionally, time-lag response-corrected Vaisala RS92 radiosondes are compared to satellites and the frost-point hygrometer measurements. In summary, most satellite data sets reviewed here show on average ∼30 % agreement amongst themselves and frost-point data but with an additional ∼30 % variability about the mean bias. The Vaisala RS92 sonde, even with a time-lag correction, shows poor behavior for pressures less than 200 hPa

    The SPARC water vapour assessment II: biases and drifts of water vapour satellite data records with respect to frost point hygrometer records

    Get PDF
    Satellite data records of stratospheric water vapour have been compared to balloon-borne frost point hygrometer (FP) profiles that are coincident in space and time. The satellite data records of 15 different instruments cover water vapour data available from January 2000 through December 2016. The hygrometer data are from 27 stations all over the world in the same period. For the comparison, real or constructed averaging kernels have been applied to the hygrometer profiles to adjust them to the measurement characteristics of the satellite instruments. For bias evaluation, we have compared satellite profiles averaged over the available temporal coverage to the means of coincident FP profiles for individual stations. For drift determinations, we analysed time series of relative differences between spatiotemporally coincident satellite and hygrometer profiles at individual stations. In a synopsis we have also calculated the mean biases and drifts (and their respective uncertainties) for each satellite record over all applicable hygrometer stations in three altitude ranges (10–30 hPa, 30–100 hPa, and 100 hPa to tropopause). Most of the satellite data have biases <10 % and average drifts <1 % yr−1 in at least one of the respective altitude ranges. Virtually all biases are significant in the sense that their uncertainty range in terms of twice the standard error of the mean does not include zero. Statistically significant drifts (95 % confidence) are detected for 35 % of the ≈ 1200 time series of relative differences between satellites and hygrometers
    corecore