208 research outputs found
Recommended from our members
NON-DESTRUCTIVE ASSAY OF CE-144 IN PRESENCE OF TRANSURANIC WASTE
The Ce- 144 isotope has been identified as a radionuclide produced in certain Los Alamos National Laboratory plutonium waste streams and thus may need to be quantified when present in reportable quantities for shipment to the Waste Isolation Pilot Plant (WIPP). The most intense gamma ray from Ce-144 was found to be the 133.53 keV peak. At this energy, there were no interfering plutonium or plutonium daughter gainma rays. Furthermore, it was determined that there were no interferences produced by Ce- 144 or its progenies that could degrade the plutonium isotopic analysis. At 5% of the total activity per gram of plutonium, the reportable limit, the Ce-144 peak at 133.53 keV will remain above the primary plutonium peak (129.3 keV) for approximately 7 years and remain quantifiable for at least 12 to 13 years from the time the isotope was chemically separated. It is therefore concluded that Ce-144 will be quantifiable whenever it exceeds 5% of the total activity per gram of plutonium, and will not interfere with the non-destructive assay of plutonium isotopic compositions
Recommended from our members
Anisotropic Damage Analysis of HY100 Steel Under Quasistatic Loading Conditions
The effect of MnS inclusion orientation on damage evolution and fracture toughness in HYlOO steel is investigated in the context of anisotropic damage modeling at the continuum level. Experimental notched-bar data sets are analyzed and modeled using finite element calculations with constitutive behavior that assumes isotropic elastoplastic behavior in conjunction with anisotropic damage
Recommended from our members
Simteche Hydrate CO2 Capture Process
As a result of an August 4, 2005 project review meeting held at Los Alamos National Laboratory (LANL) to assess the project's technical progress, Nexant/Simteche/LANL project team was asked to meet four targets related to the existing project efforts. The four targets were to be accomplished by the September 30, 2006. These four targets were: (1) The CO{sub 2} hydrate process needs to show, through engineering and sensitivity analysis, that it can achieve 90% CO{sub 2} capture from the treated syngas stream, operating at 1000 psia. The cost should indicate the potential of achieving the Sequestration Program's cost target of less than 10% increase in the cost of electricity (COE) of the non-CO{sub 2} removal IGCC plant or demonstrate a significant cost reduction from the Selexol process cost developed in the Phase II engineering analysis. (2) The ability to meet the 20% cost share requirement for research level efforts. (3) LANL identifies through equilibrium and bench scale testing a once-through 90% CO{sub 2} capture promoter that supports the potential to achieve the Sequestration Program's cost target. Nexant is to perform an engineering analysis case to verify any economic benefits, as needed; no ETM validation is required, however, for this promoter for FY06. (4) The CO{sub 2} hydrate once-through process is to be validated at 1000 psia with the ETM at a CO{sub 2} capture rate of 60% without H{sub 2}S. The performance of 68% rate of capture is based on a batch, equilibrium data with H{sub 2}S. Validation of the test results is required through multiple runs and engineering calculations. Operational issues will be solved that will specifically effect the validation of the technology. Nexant was given the primary responsibility for Target No.1, while Simteche was mainly responsible for Target No.2; with LANL having the responsibility of Targets No.3 and No.4
Recommended from our members
Quantifying reliability uncertainty : a proof of concept.
This paper develops Classical and Bayesian methods for quantifying the uncertainty in reliability for a system of mixed series and parallel components for which both go/no-go and variables data are available. Classical methods focus on uncertainty due to sampling error. Bayesian methods can explore both sampling error and other knowledge-based uncertainties. To date, the reliability community has focused on qualitative statements about uncertainty because there was no consensus on how to quantify them. This paper provides a proof of concept that workable, meaningful quantification methods can be constructed. In addition, the application of the methods demonstrated that the results from the two fundamentally different approaches can be quite comparable. In both approaches, results are sensitive to the details of how one handles components for which no failures have been seen in relatively few tests
Recommended from our members
Long-term corrosion testing plan.
This document describes the testing and facility requirements to support the Yucca Mountain Project long-term corrosion testing program. The purpose of this document is to describe a corrosion testing program that will (a) reduce model uncertainty and variability, (b) reduce the reliance upon overly conservative assumptions, and (c) improve model defensibility. Test matrices were developed for 17 topical areas (tasks): each matrix corresponds to a specific test activity that is a subset of the total work performed in a task. A future document will identify which of these activities are considered to be performance confirmation activities. Detailed matrices are provided for FY08, FY09 and FY10 and rough order estimates are provided for FY11-17. Criteria for the selection of appropriate test facilities were developed through a meeting of Lead Lab and DOE personnel on October 16-17, 2007. These criteria were applied to the testing activities and recommendations were made for the facility types appropriate to carry out each activity. The facility requirements for each activity were assessed and activities were identified that can not be performed with currently available facilities. Based on this assessment, a total of approximately 10,000 square feet of facility space is recommended to accommodate all future testing, given that all testing is consolidated to a single location. This report is a revision to SAND2008-4922 to address DOE comments
Recommended from our members
Long-term corrosion testing pan.
This document describes the testing and facility requirements to support the Yucca Mountain Project long-term corrosion testing needs. The purpose of this document is to describe a corrosion testing program that will (a) reduce model uncertainty and variability, (b) reduce the reliance upon overly conservative assumptions, and (c) improve model defensibility. Test matrices were developed for 17 topical areas (tasks): each matrix corresponds to a specific test activity that is a subset of the total work performed in a task. A future document will identify which of these activities are considered to be performance confirmation activities. Detailed matrices are provided for FY08, FY09 and FY10 and rough order estimates are provided for FY11-17. Criteria for the selection of appropriate test facilities were developed through a meeting of Lead Lab and DOE personnel on October 16-17, 2007. These criteria were applied to the testing activities and recommendations were made for the facility types appropriate to carry out each activity. The facility requirements for each activity were assessed and activities were identified that can not be performed with currently available facilities. Based on this assessment, a total of approximately 10,000 square feet of facility space is recommended to meet all future testing needs, given that all testing is consolidated to a single location. This report is a revision to SAND2007-7027 to address DOE comments and add a series of tests to address NWTRB recommendations
Recommended from our members
A multi-scale Q1/P0 approach to langrangian shock hydrodynamics.
A new multi-scale, stabilized method for Q1/P0 finite element computations of Lagrangian shock hydrodynamics is presented. Instabilities (of hourglass type) are controlled by a stabilizing operator derived using the variational multi-scale analysis paradigm. The resulting stabilizing term takes the form of a pressure correction. With respect to currently implemented hourglass control approaches, the novelty of the method resides in its residual-based character. The stabilizing residual has a definite physical meaning, since it embeds a discrete form of the Clausius-Duhem inequality. Effectively, the proposed stabilization samples and acts to counter the production of entropy due to numerical instabilities. The proposed technique is applicable to materials with no shear strength, for which there exists a caloric equation of state. The stabilization operator is incorporated into a mid-point, predictor/multi-corrector time integration algorithm, which conserves mass, momentum and total energy. Encouraging numerical results in the context of compressible gas dynamics confirm the potential of the method
Recommended from our members
Multi-unit operations considerations.
Several nuclear weapons programs have or are pursuing the implementation of multi-unit operations for tasks such as disassembly and inspection, and rebuild. A multi-unit operation is interpreted to mean the execution of nuclear explosive operating procedures in a single facility by two separate teams of technicians. The institution of a multi-unit operations program requires careful consideration of the tools, resources, and environment provided to the technicians carrying out the work. Therefore, a systematic approach is necessary to produce safe, secure, and reliable processes. In order to facilitate development of a more comprehensive multi-unit operations program, the current work details categorized issues that should be addressed prior to the implementation of multi-unit operations in a given weapons program. The issues have been organized into the following categories: local organizational conditions, work process flow/material handling/workplace configuration, ambient environmental conditions, documented safety analysis, and training
- …