909 research outputs found

    Accurate evolutions of inspiralling and magnetized neutron-stars: equal-mass binaries

    Get PDF
    By performing new, long and numerically accurate general-relativistic simulations of magnetized, equal-mass neutron-star binaries, we investigate the role that realistic magnetic fields may have in the evolution of these systems. In particular, we study the evolution of the magnetic fields and show that they can influence the survival of the hypermassive-neutron star produced at the merger by accelerating its collapse to a black hole. We also provide evidence that even if purely poloidal initially, the magnetic fields produced in the tori surrounding the black hole have toroidal and poloidal components of equivalent strength. When estimating the possibility that magnetic fields could have an impact on the gravitational-wave signals emitted by these systems either during the inspiral or after the merger we conclude that for realistic magnetic-field strengths B<~1e12 G such effects could be detected, but only marginally, by detectors such as advanced LIGO or advanced Virgo. However, magnetically induced modifications could become detectable in the case of small-mass binaries and with the development of gravitational-wave detectors, such as the Einstein Telescope, with much higher sensitivities at frequencies larger than ~2 kHz.Comment: 18 pages, 10 figures. Added two new figures (figures 1 and 7). Small modifications to the text to match the version published on Phys. Rev.

    Pulsar motions in our Galaxy

    Full text link
    Pulsar motions in our Galaxy from their birth until 2 Gyr are studied statistically via Monte-Carlo simulation of 2×1052\times 10^5 pulsars with the best available representation of the Galactic potential. We find that the distribution of height above the Galactic plane for pulsars with characteristic ages less than about 8 Myr could be well fitted by a Gaussian function. For older pulsars, an extra exponential function is necessary to fit the distribution. The scale-height of the Gaussian component increases linearly with time until about 40 Myr. The height distribution becomes stabilized after about 200 Myr. These results are not sensitive to initial height or radial distributions. Taking the relationship between the initial velocity and height distribution, we found from the latest pulsar catalog that the height distribution of pulsars younger than 1 Myr directly implies the mean initial velocity of 280±96280\pm96 km s1^{-1}. Comparison of simulated sample of pulsars with the current available millisecond pulsars shows that their 1D initial velocity dispersion should be most probably 60±1060\pm10 km s1^{-1}.Comment: 11 pages, 16 figures, accepted by MNRA

    Arecibo Pulsar Survey Using ALFA. I. Survey Strategy and First Discoveries

    Full text link
    We report results from the initial stage of a long-term pulsar survey of the Galactic plane using the Arecibo L-band Feed Array (ALFA), a seven-beam receiver operating at 1.4 GHz with 0.3 GHz bandwidth. The search targets Galactic latitudes |b| < 5 deg in the longitude ranges 32 deg < l < 77 deg and 168 deg < l < 77 deg. Data discussed here were collected over a 100 MHz passband centered on 1.42 GHz using a spectrometer that recorded 256 channels every 64 microsec. In a preliminary, standard period-DM analysis, we have detected 29 previously known pulsars and discovered 11 new ones. One of these, with a period of 69 ms and a low characteristic age of 82 kyr, is a plausible candidate for association with the unidentified EGRET source 3EG J1928+1733. Another is a non-recycled pulsar in a relativistic binary with orbital period of 3.98 hr. We also search the data for isolated dispersed pulses, a technique that yielded discovery of an extremely sporadic radio emitter with a spin period of 1.2 s. Simulations we have carried out indicate that about 1000 new pulsars will be found in the ALFA survey. In addition to providing a large sample for use in population analyses and for probing the magnetoionic interstellar medium, the survey maximizes the chances of finding rapidly spinning millisecond pulsars and pulsars in compact binary systems. Our search algorithms will exploit the multiple data streams from ALFA to discriminate between radio frequency interference and celestial signals, including pulsars and possibly new classes of transient radio sources.Comment: 10 pp, 9 figures, accepted by the Astrophysical Journa

    The effect of local thermal fluctuations on the folding kinetics: a study from the perspective of the nonextensive statistical mechanics

    Full text link
    Protein folding is a universal process, very fast and accurate, which works consistently (as it should be) in a wide range of physiological conditions. The present work is based on three premises, namely: (ii) folding reaction is a process with two consecutive and independent stages, namely the search mechanism and the overall productive stabilization; (iiii) the folding kinetics results from a mechanism as fast as can be; and (iiiiii) at nanoscale dimensions, local thermal fluctuations may have important role on the folding kinetics. Here the first stage of folding process (search mechanism) is focused exclusively. The effects and consequences of local thermal fluctuations on the configurational kinetics, treated here in the context of non extensive statistical mechanics, is analyzed in detail through the dependence of the characteristic time of folding (τ\tau) on the temperature TT and on the nonextensive parameter qq.The model used consists of effective residues forming a chain of 27 beads, which occupy different sites of a 33-D infinite lattice, representing a single protein chain in solution. The configurational evolution, treated by Monte Carlo simulation, is driven mainly by the change in free energy of transfer between consecutive configurations. ...Comment: 19 pages, 3 figures, 1 tabl

    Spin-down of neutron stars by neutrino emission

    Full text link
    We study the spin-down of a neutron star during its early stages due to the neutrino emission. The mechanism we consider is the subsequent collisions of the produced neutrinos with the outer shells of the star. We find that this mechanism can indeed slow down the star rotation but only in the first tens of seconds of the core formation, which is when the appropriate conditions of flux and collision rate are met. We find that this mechanism can extract less than 1 % of the star angular momentum, a result which is much less than previously estimated by other authors.Comment: 9 pages, 2 eps figures, RevTeX 4-1. The paper was significantly modified. Now it addresses only the issues of a neutron star spin-down. Version to be published in Phys. Rev.

    Chandra Observations of G11.2-0.3: Implications for Pulsar Ages

    Full text link
    We present Chandra X-ray Observatory imaging observations of the young Galactic supernova remnant G11.2-0.3. The image shows that the previously known young 65-ms X-ray pulsar is at position (J2000) RA 18h 11m 29.22s, DEC -19o 25' 27.''6, with 1 sigma error radius 0.''6. This is within 8'' of the geometric center of the shell. This provides strong confirming evidence that the system is younger, by a factor of ~12, than the characteristic age of the pulsar. The age discrepancy suggests that pulsar characteristic ages can be poor age estimators for young pulsars. Assuming conventional spin down with constant magnetic field and braking index, the most likely explanation for the age discrepancy in G11.2-0.3 is that the pulsar was born with a spin period of ~62 ms. The Chandra image also reveals, for the first time, the morphology of the pulsar wind nebula. The elongated hard-X-ray structure can be interpreted as either a jet or a Crab-like torus seen edge on. This adds to the growing list of highly aspherical pulsar wind nebulae and argues that such structures are common around young pulsars.Comment: 16 pages, 3 figures, Accepted for publication in ApJ. For a full resolution version of Fig 1, see http://www.physics.mcgill.ca/~vkaspi/G11.2-0.3/f1.ep

    A Modified Scalar-Tensor-Vector Gravity Theory and the Constraint on its Parameters

    Full text link
    A gravity theory called scalar-tensor-vector gravity (STVG) has been recently developed and succeeded in solar system, astrophysical and cosmological scales without dark matter [J. W. Moffat, J. Cosmol. Astropart. Phys. 03, 004 (2006)]. However, two assumptions have been used: (i) B(r)=A1(r)B(r)=A^{-1}(r), where B(r)B(r) and A(r)A(r) are g00g_{00} and grrg_{rr} in the Schwarzschild coordinates (static and spherically symmetric); (ii) scalar field G=Const.G=Const. in the solar system. These two assumptions actually imply that the standard parametrized post-Newtonian parameter γ=1\gamma=1. In this paper, we relax these two assumptions and study STVG further by using the post-Newtonian (PN) approximation approach. With abandoning the assumptions, we find γ1\gamma\neq1 in general cases of STVG. Then, a version of modified STVG (MSTVG) is proposed through introducing a coupling function of scalar field G: θ(G)\theta(G). We have derived the metric and equations of motion (EOM) in 1PN for general matter without specific equation of state and NN point masses firstly. Subsequently, the secular periastron precession ω˙\dot{\omega} of binary pulsars in harmonic coordinates is given. After discussing two PPN parameters (γ\gamma and β\beta) and two Yukawa parameters (α\alpha and λ\lambda), we use ω˙\dot{\omega} of four binary pulsars data (PSR B1913+16, PSR B1534+12, PSR J0737-3039 and PSR B2127+11C) to constrain the Yukawa parameters for MSTVG: λ=(3.97±0.01)×108\lambda=(3.97\pm0.01)\times10^{8}m and α=(2.40±0.02)×108\alpha=(2.40\pm0.02)\times10^{-8} if we fix 2γβ1=0|2\gamma-\beta-1|=0.Comment: 39 pages, 4 figures, accepted by PR

    Detecting binary neutron star systems with spin in advanced gravitational-wave detectors

    Get PDF
    The detection of gravitational waves from binary neutron stars is a major goal of the gravitational-wave observatories Advanced LIGO and Advanced Virgo. Previous searches for binary neutron stars with LIGO and Virgo neglected the component stars' angular momentum (spin). We demonstrate that neglecting spin in matched-filter searches causes advanced detectors to lose more than 3% of the possible signal-to-noise ratio for 59% (6%) of sources, assuming that neutron star dimensionless spins, cJ/GM2c\mathbf{J}/GM^2, are uniformly distributed with magnitudes between 0 and 0.4 (0.05) and that the neutron stars have isotropically distributed spin orientations. We present a new method for constructing template banks for gravitational wave searches for systems with spin. We present a new metric in a parameter space in which the template placement metric is globally flat. This new method can create template banks of signals with non-zero spins that are (anti-)aligned with the orbital angular momentum. We show that this search loses more than 3% of the maximium signal-to-noise for only 9% (0.2%) of BNS sources with dimensionless spins between 0 and 0.4 (0.05) and isotropic spin orientations. Use of this template bank will prevent selection bias in gravitational-wave searches and allow a more accurate exploration of the distribution of spins in binary neutron stars.Comment: 11 pages, 10 figure

    When care is defined by science: exploring veterinary medicine through a more-than-human geography of empathy

    Get PDF
    Veterinary medicine is the profession that is widely perceived as being at the forefront of animal care in the United Kingdom (UK). It is a form of care that is multi‐spatial and multi‐species: veterinary surgeons are involved in broad debates about animal welfare while also intimately caring for our pet companions. In order to regulate the profession, the Royal College of Veterinary Surgeons provides the Code of Professional Conduct (CPC) as the principal ethical framework that must be adhered to by all UK veterinary surgeons. The main aim of the CPC claims to ensure that the animal is, first and foremost, the primary consideration in veterinary medicine. By exploring the CPC in relation with animal geographies, emotional geographies and science and technology studies, this paper shows how the CPC remains anthropocentric and focused on a rational scientism that limits affective attunement with non‐human animals and distrusts the role of emotion and affect in veterinary medicine. These ethical‐spatial implications are then shown to extend beyond the CPC and into the conceptual terrain of ethics teaching in undergraduate veterinary education. As a way through this ethical tangle, a more‐than‐human geography of empathy is proposed. This notion takes the site of empathy as its geographical focus and suggests that a more critical, situated and holistic understanding of empathy might allow for a more thorough consideration of the tensions between human and animal and science and emotion in veterinary medicine and human geography more widely
    corecore