199 research outputs found
Radio pulsar populations
The goal of this article is to summarize the current state of play in the
field of radio pulsar statistics. Simply put, from the observed sample of
objects from a variety of surveys with different telescopes, we wish to infer
the properties of the underlying sample and to connect these with other
astrophysical populations (for example supernova remnants or X-ray binaries).
The main problem we need to tackle is the fact that, like many areas of
science, the observed populations are often heavily biased by a variety of
selection effects. After a review of the main effects relevant to radio
pulsars, I discuss techniques to correct for them and summarize some of the
most recent results. Perhaps the main point I would like to make in this
article is that current models to describe the population are far from complete
and often suffer from strong covariances between input parameters. That said,
there are a number of very interesting conclusions that can be made concerning
the evolution of neutron stars based on current data. While the focus of this
review will be on the population of isolated Galactic pulsars, I will also
briefly comment on millisecond and binary pulsars as well as the pulsar content
of globular clusters and the Magellanic Clouds.Comment: 16 pages, 6 figures, to appear in Proceedings of ICREA Workshop on
The High-Energy Emission from Pulsars and their Systems, Sant Cugat, Spain,
2010 April 12-16 (Springer
Binary and Millisecond Pulsars at the New Millennium
We review the properties and applications of binary and millisecond pulsars.
Our knowledge of these exciting objects has greatly increased in recent years,
mainly due to successful surveys which have brought the known pulsar population
to over 1300. There are now 56 binary and millisecond pulsars in the Galactic
disk and a further 47 in globular clusters. This review is concerned primarily
with the results and spin-offs from these surveys which are of particular
interest to the relativity community.Comment: 59 pages, 26 figures, 5 tables. Accepted for publication in Living
Reviews in Relativity (http://www.livingreviews.org
Physics of Neutron Star Kicks
It is no longer necessary to `sell' the idea of pulsar kicks, the notion that
neutron stars receive a large velocity (a few hundred to a thousand km
s) at birth. However, the origin of the kicks remains mysterious. We
review the physics of different kick mechanisms, including hydrodynamically
driven, neutrino and magnetically driven kicks.Comment: 8 pages including 1 figure. To be published in "Stellar Astrophysics"
(Pacific Rim Conference Proceedings), (Kluwer Pub.
Young neutron stars with soft gamma ray emission and anomalous X-ray pulsar
The observational properties of Soft Gamma Repeaters and Ano\-malous X-ray
Pulsars (SGR/AXP) indicate to necessity of the energy source different from a
rotational energy of a neutron star. The model, where the source of the energy
is connected with a magnetic field dissipation in a highly magnetized neutron
star (magnetar) is analyzed. Some observational inconsistencies are indicated
for this interpretation. The alternative energy source, connected with the
nuclear energy of superheavy nuclei stored in the nonequilibrium layer of low
mass neutron star is discussed.Comment: 29 pages, 13 figures, Springer International Publishing Switzerland
2016 A.W. Alsabti, P. Murdin (eds.), Handbook of Supernova
Recommended from our members
Enhanced Rates of Fast Radio Bursts from Galaxy Clusters
Fast Radio Bursts (FRBs) have so far been detected serendipitously across the
sky. We consider the possible enhancement in the FRB rate in the direction of
galaxy clusters, and compare the predicted rate from a large sample of galaxy
clusters to the expected cosmological mean rate. We show that clusters offer
better prospects for a blind survey if the faint end of the FRB luminosity
function is steep. We find that for a telescope with a beam of ~1 deg^2, the
best targets would be either nearby clusters such as Virgo or clusters at
intermediate cosmological distances of few hundred Mpc, which offer maximal
number of galaxies per beam. We identify several galaxy clusters which have a
significant excess FRB yield compared to the cosmic mean. The two most
promising candidates are the Virgo cluster containing 1598 galaxies and located
16.5 Mpc away and S34 cluster which contains 3175 galaxies and is located at a
distance of 486 Mpc
A repeating fast radio burst
Fast radio bursts are millisecond-duration astronomical radio pulses of unknown physical origin that appear to come from extragalactic distances(1-8). Previous follow-up observations have failed to find additional bursts at the same dispersion measure (that is, the integrated column density of free electrons between source and telescope) and sky position as the original detections(9). The apparent non-repeating nature of these bursts has led to the suggestion that they originate in cataclysmic events(10). Here we report observations of ten additional bursts from the direction of the fast radio burst FRB 121102. These bursts have dispersion measures and sky positions consistent with the original burst(4). This unambiguously identifies FRB 121102 as repeating and demonstrates that its source survives the energetic events that cause the bursts. Additionally, the bursts from FRB 121102 show a wide range of spectral shapes that appear to be predominantly intrinsic to the source and which vary on timescales of minutes or less. Although there may be multiple physical origins for the population of fast radio bursts, these repeat bursts with high dispersion measure and variable spectra specifically seen from the direction of FRB 121102 support an origin in a young, highly magnetized, extragalactic neutron star(11,12)
The Evolution of Compact Binary Star Systems
We review the formation and evolution of compact binary stars consisting of
white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and
BHs are thought to be the primary astrophysical sources of gravitational waves
(GWs) within the frequency band of ground-based detectors, while compact
binaries of WDs are important sources of GWs at lower frequencies to be covered
by space interferometers (LISA). Major uncertainties in the current
understanding of properties of NSs and BHs most relevant to the GW studies are
discussed, including the treatment of the natal kicks which compact stellar
remnants acquire during the core collapse of massive stars and the common
envelope phase of binary evolution. We discuss the coalescence rates of binary
NSs and BHs and prospects for their detections, the formation and evolution of
binary WDs and their observational manifestations. Special attention is given
to AM CVn-stars -- compact binaries in which the Roche lobe is filled by
another WD or a low-mass partially degenerate helium-star, as these stars are
thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure
Accreting Millisecond X-Ray Pulsars
Accreting Millisecond X-Ray Pulsars (AMXPs) are astrophysical laboratories
without parallel in the study of extreme physics. In this chapter we review the
past fifteen years of discoveries in the field. We summarize the observations
of the fifteen known AMXPs, with a particular emphasis on the multi-wavelength
observations that have been carried out since the discovery of the first AMXP
in 1998. We review accretion torque theory, the pulse formation process, and
how AMXP observations have changed our view on the interaction of plasma and
magnetic fields in strong gravity. We also explain how the AMXPs have deepened
our understanding of the thermonuclear burst process, in particular the
phenomenon of burst oscillations. We conclude with a discussion of the open
problems that remain to be addressed in the future.Comment: Review to appear in "Timing neutron stars: pulsations, oscillations
and explosions", T. Belloni, M. Mendez, C.M. Zhang Eds., ASSL, Springer;
[revision with literature updated, several typos removed, 1 new AMXP added
Transient radio bursts from rotating neutron stars
The `radio sky' is relatively unexplored for transient signals, although the
potential of radio-transient searches is high, as demonstrated recently by the
discovery of a previously unknown type of source which varies on timescales of
minutes to hours. Here we report a new large-scale search for radio sources
varying on much shorter timescales. This has revealed 11 objects characterized
by single, dispersed bursts having durations between 2 and 30 ms. The average
time intervals between bursts range from 4 minutes to 3 hours, with radio
emission typically detectable for < 1 s per day. From an analysis of the burst
arrival times, we have identified periodicities in the range 0.4 - 7 s for ten
of the 11 sources, suggesting a rotating neutron star origin. Despite the small
number of sources presently detected, their ephemeral nature implies a total
Galactic population which significantly exceeds that of the regularly pulsing
radio pulsars. Five of the ten sources have periods greater than 4 s, and
period derivatives have been measured for three of the sources, with one having
a very high inferred magnetic field of 5e13 G, suggesting that this new
population is related to other classes of isolated neutron stars observed at
X-ray and gamma-ray wavelengths.Comment: 10 pages, 4 figures. Accepted by Natur
Initial results from a realtime FRB search with the GBT
We present the data analysis pipeline, commissioning observations, and initial results from the GREENBURST fast radio burst (FRB) detection system on the Robert C. Byrd Green Bank Telescope (GBT) previously described by Surnis et al., which uses the 21-cm receiver observing commensally with other projects. The pipeline makes use of a state-of-the-art deep learning classifier to winnow down the very large number of false-positive single-pulse candidates that mostly result from radio frequency interference. In our observations, totalling 156.5 d so far, we have detected individual pulses from 20 known radio pulsars that provide an excellent verification of the system performance. We also demonstrate, through blind injection analyses, that our pipeline is complete down to a signal-to-noise threshold of 12. Depending on the observing mode, this translates into peak flux sensitivities in the range 0.14–0.89 Jy. Although no FRBs have been detected to date, we have used our results to update the analysis of Lawrence et al. to constrain the FRB all-sky rate to be 1150+200−180 per day above a peak flux density of 1 Jy. We also constrain the source count index α = 0.84 ± 0.06, which indicates that the source count distribution is substantially flatter than expected from a Euclidean distribution of standard candles (where α = 1.5). We discuss this result in the context of the FRB redshift and luminosity distributions. Finally, we make predictions for detection rates with GREENBURST, as well as other ongoing and planned FRB experiments
- …
