10,804 research outputs found

    Spin-orbital excitation continuum and anomalous electron-phonon interaction in the Mott insulator LaTiO3_3

    Full text link
    Raman scattering experiments on stoichiometric, Mott-insulating LaTiO3_3 over a wide range of excitation energies reveal a broad electronic continuum which is featureless in the paramagnetic state, but develops a gap of 800\sim 800 cm1^{-1} upon cooling below the N\'eel temperature TN=146T_N = 146 K. In the antiferromagnetic state, the spectral weight below the gap is transferred to well-defined spectral features due to spin and orbital excitations. Low-energy phonons exhibit pronounced Fano anomalies indicative of strong interaction with the electron system for T>TNT > T_N, but become sharp and symmetric for T<TNT < T_N. The electronic continuum and the marked renormalization of the phonon lifetime by the onset of magnetic order are highly unusual for Mott insulators and indicate liquid-like correlations between spins and orbitals.Comment: to appear in Phys. Rev. Let

    Magnetostrictive Neel ordering of the spin-5/2 ladder compound BaMn2O3: distortion-induced lifting of geometrical frustration

    Full text link
    The crystal structure and the magnetism of BaMn2_2O3_3 have been studied by thermodynamic and by diffraction techniques using large single crystals and powders. BaMn2_2O3_3 is a realization of a S=5/2S = 5/2 spin ladder as the magnetic interaction is dominant along 180^\circ Mn-O-Mn bonds forming the legs and the rungs of a ladder. The temperature dependence of the magnetic susceptibility exhibits well-defined maxima for all directions proving the low-dimensional magnetic character in BaMn2_2O3_3. The susceptibility and powder neutron diffraction data, however, show that BaMn2_2O3_3 exhibits a transition to antiferromagnetic order at 184 K, in spite of a full frustration of the nearest-neighbor inter-ladder coupling in the orthorhombic high-temperature phase. This frustration is lifted by a remarkably strong monoclinic distortion which accompanies the magnetic transition.Comment: 9 pages, 8 figures, 2 tables; in V1 fig. 2 was included twice and fig. 4 was missing; this has been corrected in V

    National quality indicators and policies from 15 countries leading in adult end-of-life care: A systematic environmental scan

    Full text link
    © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted. Background: The importance of measuring the quality of end-of-life care provision is undisputed, but determining how best to achieve this is yet to be confirmed. This study sought to identify and describe national end-of-life care quality indicators and supporting policies used by countries leading in their end-of-life care provision. Methods: A systematic environmental scan that included a web search to identify relevant national policies and indicators; hand searching for additional materials; information from experts listed for the top 10 (n=15) countries ranked in the 'quality of care' category of the 2015 Quality of Death Index study; and snowballing from Index experts. Findings: Ten countries (66%) have national policy support for end-of-life care measurement, five have national indicator sets, with two indicator sets suitable for all service providers. No countries mandate indicator use, and there is limited evidence of consumer engagement in development of indicators. Two thirds of the 128 identified indicators are outcomes measures (62%), and 38% are process measures. Most indicators pertain to symptom management (38%), social care (32%) or care delivery (27%). Interpretations: Measurement of end-of-life care quality varies globally and rarely covers all care domains or service providers. There is a need to reduce duplication of indicator development, involve consumers, consider all care providers and ensure measurable and relevant indicators to improve end-of-life care experiences for patients and families

    Anomalous expansion and phonon damping due to the Co spin-state transition in RCoO_3 with R = La, Pr, Nd and Eu

    Full text link
    We present a combined study of the thermal expansion and the thermal conductivity of the perovskite series RCoO_3 with R = La, Nd, Pr and Eu. The well-known spin-state transition in LaCoO_3 is strongly affected by the exchange of the R ions due to their different ionic radii, i.e. chemical pressure. This can be monitored in detail by measurements of the thermal expansion, which is a highly sensitive probe for detecting spin-state transitions. The Co ions in the higher spin state act as additional scattering centers for phonons, therefore suppressing the phonon thermal conductivity. Based on the analysis of the interplay between spin-state transition and heat transport, we present a quantitative model of the thermal conductivity for the entire series. In PrCoO_3, an additional scattering effect is active at low temperatures. This effect arises from the crystal field splitting of the 4f multiplet, which allows for resonant scattering of phonons between the various 4f levels.Comment: 15 pages including 5 figure

    The spin state transition in LaCoO3_{3}; revising a revision

    Get PDF
    Using soft x-ray absorption spectroscopy and magnetic circular dichroism at the Co-L2,3L_{2,3} edge we reveal that the spin state transition in LaCoO3_{3} can be well described by a low-spin ground state and a triply-degenerate high-spin first excited state. From the temperature dependence of the spectral lineshapes we find that LaCoO3_{3} at finite temperatures is an inhomogeneous mixed-spin-state system. Crucial is that the magnetic circular dichroism signal in the paramagnetic state carries a large orbital momentum. This directly shows that the currently accepted low-/intermediate-spin picture is at variance. Parameters derived from these spectroscopies fully explain existing magnetic susceptibility, electron spin resonance and inelastic neutron data

    Evidence for a temperature-induced spin-state transition of Co3+ in La2-xSrxCoO4

    Full text link
    We study the magnetic susceptibility of mixed-valent La2-xSrxCoO4 single crystals in the doping range of 0.5<= x <= 0.8 for temperatures up to 1000 K. The magnetism below room temperature is described by paramagnetic Co2+ in the high-spin state and by Co3+ in the non-magnetic low-spin state. Above room temperature, an increase in susceptibility compared to the behavior expected from Co2+ is seen, which we attribute to a spin-state transition of Co3+. The susceptibility is analyzed by comparison to full-multiplet calculations for the thermal population of the high- and intermediate-spin states of Co3+
    corecore