47 research outputs found

    Length of tandem repeats in fibrin's αC region correlates with fiber extensibility

    Get PDF
    The mechanical properties of blood clots are of central importance to hemostasis, thrombosis and embolism. Fibrin fiber networks are the major structural constituent of clots, and numerous studies dating back several decades have characterized their macroscopic viscoelastic properties. The fiber-level and molecular details giving rise to these properties have not been established, however. The correlation between mechanical properties and amino acid sequence is critical for a predictive understanding of the role of genetic defects in clot pathologies. To address this issue, we have developed a nanomanipulation technique for evaluating individual fibrin fibers. It consists of a combination fluorescence/atomic force microscope system that permits viewing of fiber deformation simultaneous with quantitative strain data. Recently we and our colleagues reported on the high extensibility of individual human fibrin fibers, with extensibility (or strain at breaking) of some fibers exceeding 300%, and elastic recovery with strains of up to 180%. This places human fibrin among the most extensible protein polymers, exceeding elastin and resilin in extensibility. Here we test the hypothesis that the majority of the strain is taken up by the tandem repeat segment of the flexible αC region of fibrin. Our study focused on this portion of the protein by mechanically evaluating fibrins with varying lengths of the tandem repeat segment. Using our integrated nanomanipulation system, we stretched individual fibrin fibers made of human, mouse and chicken fibrinogen which have long, intermediate and zero length tandem repeat segments respectively. We found that extensibility correlated with the lengths of the tandem repeat segments

    A Herschel/PACS Far-infrared line emission survey of local luminous infrared galaxies

    Get PDF
    We present an analysis of [OI]63, [OIII]88, [NII]122 and [CII]158 far-infrared (FIR) fine-structure line observations obtained with Herschel/PACS, for ~240 local luminous infrared galaxies (LIRGs) in the Great Observatories All-sky LIRG Survey (GOALS). We find pronounced declines -deficits- of line-to-FIR-continuum emission for [NII]122, [OI]63 and [CII]158 as a function of FIR color and infrared luminosity surface density, ΣIR\Sigma_{\rm IR}. The median electron density of the ionized gas in LIRGs, based on the [NII]122/[NII]205 ratio, is nen_{\rm e} = 41 cm3^{-3}. We find that the dispersion in the [CII]158 deficit of LIRGs is attributed to a varying fractional contribution of photo-dissociation-regions (PDRs) to the observed [CII]158 emission, f([CII]PDR) = [CII]PDR/[CII], which increases from ~60% to ~95% in the warmest LIRGs. The [OI]63/[CII]158PDR ratio is tightly correlated with the PDR gas kinetic temperature in sources where [OI]63 is not optically-thick or self-absorbed. For each galaxy, we derive the average PDR hydrogen density, nHn_{\rm H}, and intensity of the interstellar radiation field, in units of G0_0, and find G0_0/nHn_{\rm H} ratios ~0.1-50 cm3^3, with ULIRGs populating the upper end of the distribution. There is a relation between G0_0/nHn_{\rm H} and ΣIR\Sigma_{\rm IR}, showing a critical break at ΣIR\Sigma_{\rm IR}^{\star} ~ 5 x 1010^{10} Lsun/kpc2^2. Below ΣIR\Sigma_{\rm IR}^{\star}, G0_0/nHn_{\rm H} remains constant, ~0.32 cm3^3, and variations in ΣIR\Sigma_{\rm IR} are driven by the number density of star-forming regions within a galaxy, with no change in their PDR properties. Above ΣIR\Sigma_{\rm IR}^{\star}, G0_0/nHn_{\rm H} increases rapidly with ΣIR\Sigma_{\rm IR}, signaling a departure from the typical PDR conditions found in normal star-forming galaxies towards more intense/harder radiation fields and compact geometries typical of starbursting sources

    All-sky search for long-duration gravitational wave transients with initial LIGO

    Get PDF
    We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society

    All-sky search for long-duration gravitational wave transients with initial LIGO

    Get PDF
    We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society

    Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background

    Get PDF
    The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω0T<5.58×10-8, Ω0V<6.35×10-8, and Ω0S<1.08×10-7 at a reference frequency f0=25 Hz. © 2018 American Physical Society

    On the progenitor of binary neutron star merger GW170817

    Get PDF
    On 2017 August 17 the merger of two compact objects with masses consistent with two neutron stars was discovered through gravitational-wave (GW170817), gamma-ray (GRB 170817A), and optical (SSS17a/AT 2017gfo) observations. The optical source was associated with the early-type galaxy NGC 4993 at a distance of just ∼40 Mpc, consistent with the gravitational-wave measurement, and the merger was localized to be at a projected distance of ∼2 kpc away from the galaxy's center. We use this minimal set of facts and the mass posteriors of the two neutron stars to derive the first constraints on the progenitor of GW170817 at the time of the second supernova (SN). We generate simulated progenitor populations and follow the three-dimensional kinematic evolution from binary neutron star (BNS) birth to the merger time, accounting for pre-SN galactic motion, for considerably different input distributions of the progenitor mass, pre-SN semimajor axis, and SN-kick velocity. Though not considerably tight, we find these constraints to be comparable to those for Galactic BNS progenitors. The derived constraints are very strongly influenced by the requirement of keeping the binary bound after the second SN and having the merger occur relatively close to the center of the galaxy. These constraints are insensitive to the galaxy's star formation history, provided the stellar populations are older than 1 Gyr

    A gravitational-wave standard siren measurement of the Hubble constant

    Get PDF
    The detection of GW170817 (ref. 1) heralds the age of gravitational-wave multi-messenger astronomy, with the observations of gravitational-wave and electromagnetic emission from the same transient source. On 17 August 2017 the network of Advanced Laser Interferometer Gravitational-wave Observatory (LIGO)2 and Virgo3 detectors observed GW170817, a strong signal from the merger of a binary neutron-star system. Less than two seconds after the merger, a γ-ray burst event, GRB 170817A, was detected consistent with the LIGO–Virgo sky localization region4–6). The sky region was subsequently observed by optical astronomy facilities7, resulting in the identification of an optical transient signal within about 10 arcseconds of the galaxy NGC 4993 (refs 8–13). GW170817 can be used as a standard siren14–18, combining the distance inferred purely from the gravitational-wave signal with the recession velocity arising from the electromagnetic data to determine the Hubble constant. This quantity, representing the local expansion rate of the Universe, sets the overall scale of the Universe and is of fundamental importance to cosmology. Our measurements do not require any form of cosmic ‘distance ladder’19; the gravitational-wave analysis directly estimates the luminosity distance out to cosmological scales. Here we report H0 = kilometres per second per megaparsec, which is consistent with existing measurements20,21, while being completely independent of them

    A framework for understanding leadership and individual requisite complexity.

    No full text
    This paper examines the relation of individual perceptual, conscious, and self-regulatory processes to the generation of requisite complexity in formal and informal leaders. Requisite complexity is a complex adaptive systems concept that pertains to the ability of a system to adjust to the requirements of a changing environment by achieving equivalent levels of complexity. We maintain that requisite complexity has both static and dynamic aspects that involve four domains (general, social, self, and affective complexity), with each being more or less important for leaders depending upon the task requirements they face. Dynamic complexity draws on these static components and also creates new aspects of complexity through the interaction of mental processes. The implications of these issues for understanding leader adaptation and development are also discussed. </jats:p
    corecore