81 research outputs found

    Use of anticoagulants and antiplatelet agents in stable outpatients with coronary artery disease and atrial fibrillation. International CLARIFY registry

    Get PDF

    Measurement of the polarizations of prompt and non-prompt J/ψ and ψ (2S) mesons produced in pp collisions at s\sqrt{s} = 13 TeV

    Get PDF
    The polarizations of prompt and non-prompt J∕ψ and ψ(2S) mesons are measured in proton-proton collisions at √ = 13 TeV, using data samples collected by the CMS experiment in 2017 and 2018, corresponding to a total integrated luminosity of 103.3 fb1^{−1}. Based on the analysis of the dimuon decay angular distributions in the helicity frame, the polar anisotropy, , is measured as a function of the transverse momentum, T_T, of the charmonium states, in the 25–120 and 20–100 GeV ranges for the J∕ψ and ψ(2S), respectively. The non-prompt polarizations agree with predictions based on the hypothesis that, for T ≳ 25 GeV, the non-prompt J∕ψ and ψ(2S) are predominantly produced in two-body B meson decays. The prompt results clearly exclude strong transverse polarizations, even for T_T exceeding 30 times the J∕ψ mass, where tends to an asymptotic value around 0.3. Taken together with previous measurements, by CMS and LHCb at √ = 7 TeV, the prompt polarizations show a significant variation with T_T, at low T_T

    Observation of the J / ψ → μ⁺ μ⁻ μ⁺ μ⁻ decay in proton-proton collisions at √s = 13 TeV

    Get PDF

    Search for heavy neutral leptons in final states with electrons, muons, and hadronically decaying tau leptons in proton-proton collisions at s \sqrt{s} = 13 TeV

    Get PDF
    A search for heavy neutral leptons (HNLs) of Majorana or Dirac type using proton-proton collision data at = 13 TeV is presented. The data were collected by the CMS experiment at the CERN LHC and correspond to an integrated luminosity of 138 fb−1. Events with three charged leptons (electrons, muons, and hadronically decaying tau leptons) are selected, corresponding to HNL production in association with a charged lepton and decay of the HNL to two charged leptons and a standard model (SM) neutrino. The search is performed for HNL masses between 10 GeV and 1.5 TeV. No evidence for an HNL signal is observed in data. Upper limits at 95% confidence level are found for the squared coupling strength of the HNL to SM neutrinos, considering exclusive coupling of the HNL to a single SM neutrino generation, for both Majorana and Dirac HNLs. The limits exceed previously achieved experimental constraints for a wide range of HNL masses, and the limits on tau neutrino coupling scenarios with HNL masses above the W boson mass are presented for the first time

    Search for new physics in high-mass diphoton events from proton-proton collisions at √s = 13 TeV

    Get PDF
    Results are presented from a search for new physics in high-mass diphoton events from proton-proton collisions at sqrt(s) = 13 TeV. The data set was collected in 2016–2018 with the CMS detector at the LHC and corresponds to an integrated luminosity of 138 fb−1 . Events with a diphoton invariant mass greater than 500 GeV are considered. Two diferent techniques are used to predict the standard model backgrounds: parametric fts to the smoothly-falling background and a frst-principles calculation of the standard model diphoton spectrum at next-to-next-to-leading order in perturbative quantum chromodynamics calculations. The frst technique is sensitive to resonant excesses while the second technique can identify broad diferences in the invariant mass shape. The data are used to constrain the production of heavy Higgs bosons, Randall-Sundrum gravitons, the large extra dimensions model of Arkani-Hamed, Dimopoulos, and Dvali (ADD), and the continuum clockwork mechanism. No statistically signifcant excess is observed. The present results are the strongest limits to date on ADD extra dimensions and RS gravitons with a coupling parameter greater than 0.1

    Search for the decay of the Higgs boson to a pair of light pseudoscalar bosons in the final state with four bottom quarks in proton-proton collisions at s \sqrt{\textrm{s}} = 13 TeV

    Get PDF

    Nonresonant central exclusive production of charged-hadron pairs in proton-proton collisions at √s = 13 TeV

    Get PDF
    The central exclusive production of charged-hadron pairs in ⁢ collisions at a center-of-mass energy of 13 TeV is examined, based on data collected in a special high-* run of the LHC. The nonresonant continuum processes are studied with the invariant mass of the centrally produced two-pion system in the resonance-free region, +⁢−1.8  GeV. Differential cross sections as functions of the azimuthal angle between the surviving protons, squared exchanged four-momenta, and +⁢− are measured in a wide region of scattered proton transverse momenta, between 0.2 and 0.8 GeV, and for pion rapidities ||<2. A rich structure of interactions related to double-pomeron exchange is observed. A parabolic minimum in the distribution of the two-proton azimuthal angle is observed for the first time. It can be interpreted as an effect of additional pomeron exchanges between the protons from the interference between the bare and the rescattered amplitudes. After model tuning, various physical quantities are determined that are related to the pomeron cross section, proton-pomeron and meson-pomeron form factors, pomeron trajectory and intercept, and coefficients of diffractive eigenstates of the proton

    Measurement of Energy Correlators inside Jets and Determination of the Strong Coupling Formula Presented

    Get PDF
    Energy correlators that describe energy-weighted distances between two or three particles in a hadronic jet are measured using an event sample of s\sqrt{s}=13 TeV proton-proton collisions collected by the CMS experiment and corresponding to an integrated luminosity of 36.3 fb1^{−1}. The measured distributions are consistent with the trends in the simulation that reveal two key features of the strong interaction: confinement and asymptotic freedom. By comparing the ratio of the measured three- and two-particle energy correlator distributions with theoretical calculations that resum collinear emissions at approximate next-to-next-to-leading-logarithmic accuracy matched to a next-to-leading-order calculation, the strong coupling is determined at the Z boson mass: αS_S (mZ_Z)=0.1229 0.00400.0050\frac{0.0040}{-0.0050} , the most precise αS_SmZ_Z value obtained using jet substructure observable
    corecore