399 research outputs found
Therapeutical Management for Ocular Rosacea
Purpose: The purpose of this study is to describe a case of ocular rosacea with a very complex evolution. Rosacea is a chronic dermatological disease that may affect the ocular structures up to 6-72% of all cases. This form is often misdiagnosed, which may lead to long inflammatory processes with important visual consequences for affected patients. Therefore, an early diagnosis and an adequate treatment are important. Methods: We report the case of a 43-year-old patient who had several relapses of what seemed an episode of acute bacterial conjunctivitis. Two weeks later, he developed a corneal ulcer with a torpid evolution including abundant intrastromal infiltrators and calcium deposits. He was diagnosed with ocular rosacea and treated with systemic doxycycline and topical protopic. Results: A coating with amniotic membrane was placed in order to heal the ulcer, but a deep anterior lamellar keratoplasty to restore the patient''s vision because of the corneal transparency loss was necessary. Conclusions: Ocular rosacea includes multiple ophthalmic manifestations ranging from inflammation of the eyelid margin and blepharitis to serious corneal affectations. A delayed diagnosis can result in chronic inflammatory conditions including keratinization and loss of corneal transparency, which lead to important visual sequelae for affected patients. (C) 2016 The Author(s) Published by S. Karger AG, Base
Polar warming in the Mars thermosphere: Seasonal variations owing to changing insolation and dust distributions
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94781/1/grl20448.pd
Recommended from our members
Modeling the martian atmosphere with the LMD global climate model
Introduction: For several years we have been developing a 3D Global Climate Model (GCM) for Mars derived from the models used on Earth for weather forecasting or climate changes studies [1]. The purpose of such a project is ambitious: we wish to build a 'Mars simulator' based only on physical equations, with no tailor-made forcing, but able to reproduce all the available observations of the Martian climate (temperatures, winds, but also clouds, dust, ices, chemical species, etc...).
The GCM is constantly evolving, thanks to a contnuous collaboration between several teams based in France (LMD, SA), the UK (The Open University, University of Oxford) and Spain (Instituto de Astrofisica de Andalucia), and with the support of ESA and CNES.
We are currently working on an improved version of the model. Several new parametrisation are included in the heart of the model (radiative transfer, surface and subsurface processes, dynamics) and the applications of the GCM are in contnuous development (Water, dust, CO2, radon cycles, photochemistry, thermosphere, ionosphere, etc...
p21(Cip1) plays a critical role in the physiological adaptation to fasting through activation of PPARα.
Fasting is a physiological stress that elicits well-known metabolic adaptations, however, little is known about the role of stress-responsive tumor suppressors in fasting. Here, we have examined the expression of several tumor suppressors upon fasting in mice. Interestingly, p21 mRNA is uniquely induced in all the tissues tested, particularly in liver and muscle (>10 fold), and this upregulation is independent of p53. Remarkably, in contrast to wild-type mice, p21-null mice become severely morbid after prolonged fasting. The defective adaptation to fasting of p21-null mice is associated to elevated energy expenditure, accelerated depletion of fat stores, and premature activation of protein catabolism in the muscle. Analysis of the liver transcriptome and cell-based assays revealed that the absence of p21 partially impairs the transcriptional program of PPARα, a key regulator of fasting metabolism. Finally, treatment of p21-null mice with a PPARα agonist substantially protects them from their accelerated loss of fat upon fasting. We conclude that p21 plays a relevant role in fasting adaptation through the positive regulation of PPARα
Martian Atmospheric Temperature and Density Profiles During the First Year of NOMAD/TGO Solar Occultation Measurements
We present vertical profiles of temperature and density from solar occultation (SO) observations by the “Nadir and Occultation for Mars Discovery” (NOMAD) spectrometer on board the Trace Gas Orbiter during its first operational year, which covered the second half of Mars Year 34. We used calibrated transmittance spectra in 380 scans, and apply an in-house pre-processing to clean data systematics. Temperature and CO2 profiles up to about 90 km, with consistent hydrostatic adjustment, are obtained, after adapting an Earth-tested retrieval scheme to Mars conditions. Both pre-processing and retrieval are discussed to illustrate their performance and robustness. Our results reveal the large impact of the MY34 Global Dust Storm (GDS), which warmed the atmosphere at all altitudes. The large GDS aerosols opacity limited the sounding of tropospheric layers. The retrieved temperatures agree well with global climate models (GCM) at tropospheric altitudes, but NOMAD mesospheric temperatures are wavier and globally colder by 10 K in the perihelion season, particularly during the GDS and its decay phase. We observe a warm layer around 80 km during the Southern Spring, especially in the Northern Hemisphere morning terminator, associated to large thermal tides, significantly stronger than in the GCM. Cold mesospheric pockets, close to CO2 condensation temperatures, are more frequently observed than in the GCM. NOMAD CO2 densities show oscillations upon a seasonal trend that track well the latitudinal variations expected. Results uncertainties and suggestions to improve future data re-analysis are briefly discussed
Recommended from our members
Carbon dioxide retrievals from NOMAD‐SO on ESA’s ExoMars Trace Gas Orbiter and temperature profiles retrievals with the hydrostatic equilibrium equation: 2. Temperature variabilities in the mesosphere at Mars terminator.
The Solar Occultation (SO) channel of the Nadir and Occultation for Mars Discovery (NOMAD) instrument scans the Martian atmosphere since 21 April 2018. In this work, we present a subset of the NOMAD SO data measured at the mesosphere. We focused on a spectral range that started to be recorded in Martian year (MY) 35. A total of 968 vertical profiles of carbon dioxide density and temperature covering MY 35 and the beginning of MY 36 were investigated until 135° of solar longitude. We compared 47 profiles with co-located profiles of the Mars Climate Sounder onboard the Mars Reconnaissance Orbiter. Most profiles show a good agreement as SO temperatures are only 1.8 K higher, but some biases lead to an average absolute difference of 7.4°K. The SO data set is also compared with simulations from the Global Environmental Multiscale-Mars general circulation model. Both data sets are in good agreement except for the presence of a cold layer in the winter hemisphere and a warm layer at dawn in the Northern hemisphere for solar longitudes between 240° and 360°. Five profiles contain temperatures lower than the limit for CO2 condensation. Strong warm layers were found in 13.5% of the profiles. They are present mainly at dawn and in the winter hemisphere, while the Northern dusks appear featureless. The data set mainly covers high latitudes around 60° and we derived some non-migrating tides. In the Southern winter hemisphere, we derived apparent zonal wavenumber-1 (WN-1) and WN-3 tidal components with a maximum amplitude of 10% and 5% at 63 km, respectively
Nivolumab and sunitinib combination in advanced soft tissue sarcomas : A multicenter, single-arm, phase Ib/II trial
Sarcomas exhibit low expression of factors related to immune response, which could explain the modest activity of PD-1 inhibitors. A potential strategy to convert a cold into an inflamed microenvironment lies on a combination therapy. As tumor angiogenesis promotes immunosuppression, we designed a phase Ib/II trial to test the double inhibition of angiogenesis (sunitinib) and PD-1/PD-L1 axis (nivolumab). This single-arm, phase Ib/II trial enrolled adult patients with selected subtypes of sarcoma. Phase Ib established two dose levels: level 0 with sunitinib 37.5 mg daily from day 1, plus nivolumab 3 mg/kg intravenously on day 15, and then every 2 weeks; and level-1 with sunitinib 37.5 mg on the first 14 days (induction) and then 25 mg per day plus nivolumab on the same schedule. The primary endpoint was to determine the recommended dose for phase II (phase I) and the 6-month progression-free survival rate, according to Response Evaluation Criteria in Solid Tumors 1.1 (phase II). From May 2017 to April 2019, 68 patients were enrolled: 16 in phase Ib and 52 in phase II. The recommended dose of sunitinib for phase II was 37.5 mg as induction and then 25 mg in combination with nivolumab. After a median follow-up of 17 months (4-26), the 6-month progression-free survival rate was 48% (95% CI 41% to 55%). The most common grade 3-4 adverse events included transaminitis (17.3%) and neutropenia (11.5%). Sunitinib plus nivolumab is an active scheme with manageable toxicity in the treatment of selected patients with advanced soft tissue sarcoma, with almost half of patients free of progression at 6 months
Recommended from our members
Modeling the martian atmosphere with the LMD global climate model
Our Global Climate Model (GCM) of the Martian atmosphere is the result of twenty years of ongoing collaboration between our teams and has matured to the point of enabling to study the main cycles (dust, CO2, water) of present-day and past Martian climates.
At the 2014 scientific assembly, we will report on the latest developments and improvements of our GCM, and also present the latest version of the Mars Climate Database (version 5.1) that is derived from GCM outputs, along with comparisons with available measurements (from TES, MCS, Viking, Phoenix, Curiosity, etc.)
The Beta-decay Paul Trap Mk IV: Design and commissioning
The Beta-decay Paul Trap is an open-geometry, linear trap used to measure the
decays of Li and B to search for a tensor contribution to the weak
interaction. In the latest Li measurement of Burkey et al. (2022),
scattering was the dominant experimental systematic uncertainty. The Beta-decay
Paul Trap Mk IV reduces the prevalence of scattering by a factor of 4
through a redesigned electrode geometry and the use of glassy carbon and
graphite as electrode materials. The trap has been constructed and successfully
commissioned with Li in a new data campaign that collected 2.6 million
triple coincidence events, an increase in statistics by 30% with 4 times less
scattering compared to the previous Li data set.Comment: 17 pages, 7 figure
- …