36 research outputs found
Increased gene sampling strengthens support for higher-level groups within leaf-mining moths and relatives (Lepidoptera: Gracillariidae)
Background: Researchers conducting molecular phylogenetic studies are frequently faced with the decision of what to do when weak branch support is obtained for key nodes of importance. As one solution, the researcher may choose to sequence additional orthologous genes of appropriate evolutionary rate for the taxa in the study. However, generating large, complete data matrices can become increasingly difficult as the number of characters increases. A few empirical studies have shown that augmenting genes even for a subset of taxa can improve branch support. However, because each study differs in the number of characters and taxa, there is still a need for additional studies that examine whether incomplete sampling designs are likely to aid at increasing deep node resolution. We target Gracillariidae, a Cretaceous-age (similar to 100 Ma) group of leaf-mining moths to test whether the strategy of adding genes for a subset of taxa can improve branch support for deep nodes. We initially sequenced ten genes (8,418 bp) for 57 taxa that represent the major lineages of Gracillariidae plus outgroups. After finding that many deep divergences remained weakly supported, we sequenced eleven additional genes (6,375 bp) for a 27-taxon subset. We then compared results from different data sets to assess whether one sampling design can be favored over another. The concatenated data set comprising all genes and all taxa and three other data sets of different taxon and gene sub-sampling design were analyzed with maximum likelihood. Each data set was subject to five different models and partitioning schemes of non-synonymous and synonymous changes. Statistical significance of non-monophyly was examined with the Approximately Unbiased (AU) test. Results: Partial augmentation of genes led to high support for deep divergences, especially when non-synonymous changes were analyzed alone. Increasing the number of taxa without an increase in number of characters led to lower bootstrap support; increasing the number of characters without increasing the number of taxa generally increased bootstrap support. More than three-quarters of nodes were supported with bootstrap values greater than 80% when all taxa and genes were combined. Gracillariidae, Lithocolletinae + Leucanthiza, and Acrocercops and Parectopa groups were strongly supported in nearly every analysis. Gracillaria group was well supported in some analyses, but less so in others. We find strong evidence for the exclusion of Douglasiidae from Gracillarioidea sensu Davis and Robinson (1998). Our results strongly support the monophyly of a G.B.R.Y. clade, a group comprised of Gracillariidae + Bucculatricidae + Roeslerstammiidae + Yponomeutidae, when analyzed with non-synonymous changes only, but this group was frequently split when synonymous and non-synonymous substitutions were analyzed together. Conclusions: 1) Partially or fully augmenting a data set with more characters increased bootstrap support for particular deep nodes, and this increase was dramatic when non-synonymous changes were analyzed alone. Thus, the addition of sites that have low levels of saturation and compositional heterogeneity can greatly improve results. 2) Gracillarioidea, as defined by Davis and Robinson (1998), clearly do not include Douglasiidae, and changes to current classification will be required. 3) Gracillariidae were monophyletic in all analyses conducted, and nearly all species can be placed into one of six strongly supported clades though relationships among these remain unclear. 4) The difficulty in determining the phylogenetic placement of Bucculatricidae is probably attributable to compositional heterogeneity at the third codon position. From our tests for compositional heterogeneity and strong bootstrap values obtained when synonymous changes are excluded, we tentatively conclude that Bucculatricidae is closely related to Gracillariidae + Roeslerstammiidae + Yponomeutidae
Diversity and endemism of the Lepidoptera of Madagascar
International audienceAt the most recent census of described lepidopteran taxa in 2021, 1,418 genera and 5,016 specieswere recognised for the island of Madagascar. However, the species endemism rate, althoughclearly exceptional for such a large landmass (ca. 600,000 km2), has remained poorly known. Thatfigure is now estimated to exceed 80% in this highly isolated island. Some 28 superfamilies and 83families of moths and butterflies are known to occur there. Whereas the five superfamilies withinMacroheterocera, comprising around 681 genera and at least 2,989 species, are relatively wellknown, extrapolations of the total fauna suggest well in excess of 10,000 species are present. OnBOLD 2,903 COI-5P species clusters (BINs) are publicly available, 2,400 of which are unnamed tospecies. Malaise trapping is rapidly adding to the number of unidentified BINs; a recent Malaisesample from Andasibe in two seasons containing 1,527 BINs found that less than 20% wereMacroheterocera whilst >98% of 510 non-macroheteroceran BINs were novel to BOLD
Detecting primary ranges of the invasive forest pests using historical herbaria
International audienc
No evidence that reproductive bumblebee workers reduce the production of new queens
Kin selection theory predicts potential conflict between queen and workers over male parentage in hymenopteran societies headed by one, singly mated queen, because each party is more closely related to its own male offspring. In ‘late-switching’ colonies of the bumblebee Bombus terrestris, i.e. colonies whose queens lay haploid eggs relatively late in the colony cycle, workers start to lay male eggs shortly after the queen lays the female eggs that will develop into new queens. It has been hypothesized that this occurs because workers recognize, via a signal given by the queen instructing female larvae to commence development as queens, that egg laying is now in their kin-selected interest. This hypothesis assumes that aggressive behaviour in egg-laying workers does not substantially reduce the production of new queens, which would decrease the workers' fitness payoff from producing males. We tested the hypothesis that reproductive activity inB. terrestris workers does not reduce the production of new queens. We used microsatellite genotyping to sex eggs and hence to select eight size-matched pairs of ‘late-switching’ colonies from a set of commercial colonies. From one colony of each pair we removed every egg-laying or aggressive worker observed. From the other colony, we simultaneously removed a nonegg-laying, nonaggressive worker. Removed workers were replaced with young workers from separate colonies at equal frequencies within the pair. There was no significant difference in queen productivity between colonies with reduced or normal levels of egg-laying or aggressive workers. Therefore, as predicted, reproductive B. terrestris workers did not significantly reduce the production of new queens
DNA barcoding and DNA metabarcoding as tools for rapid inventory and high-throughput identification of Lepidoptera species in Amazonia
International audienc
DNA barcoding and DNA metabarcoding as tools for rapid inventory and high-throughput identification of Lepidoptera species in Amazonia
International audienc
Tracking origins of the highly invasive horse-chestnut leafminer using herbaria and minibarcodes
International audienc
Tracking origins of invasive leaf-mining moths using herbaria and minibarcodes
International audienc
Fossil-calibrated molecular phylogenies reveal that leaf-mining moths radiated several million years after their host plants
Coevolution has been hypothesized as the main driving force for the remarkable diversity of insect–plant associations. Dating of insect and plant phylogenies allows us to test coevolutionary hypotheses and distinguish between the contemporaneous radiation of interacting lineages vs. insect ‘host tracking’ of previously diversified plants. Here, we used nuclear DNA to reconstruct a molecular phylogeny for 100 species of Phyllonorycter leaf-mining moths and 36 outgroup taxa. Ages for nodes in the moth phylogeny were estimated using a combination of a penalized likelihood method and a Bayesian approach, which takes into account phylogenetic uncertainty. To convert the relative ages of the moths into dates, we used an absolute calibration point from the fossil record. The age estimates of (a selection of) moth clades were then compared with fossil-based age estimates of their host plants. Our results show that the principal radiation of Phyllonorycter leaf-mining moths occurred well after the main radiation of their host plants and may represent the dominant associational mode in the fossil record