12 research outputs found

    Seismic performance and resilience of composite damping self-centering braced frame structures

    No full text
    A magnetorheological self-centering brace (MR–SCB) has been proposed to improve the energy dissipation capability of the brace. In this paper, a 15-story MR–SCB braced frame is numerically analyzed to examine its seismic performance and resilience. The MR–SCB provides higher lateral stiffness than the buckling restrained brace and greater energy dissipation capability than the existing self-centering brace. The brace also exhibits a reliable recentering capacity. Under rare earthquakes, the maximum average residual deformation ratio of the structure is less than the 0.5% limit. Under mega earthquakes, the maximum average interstory drift ratio of the structure does not exceed the 2.0% elastoplastic limit, and its maximum average floor acceleration ratio is 1.57. The effects of mainshock and aftershock on the structural behavior are also investigated. The interstory drift and residual deformation of the structure increase with the increase of the intensity of the aftershock. Under aftershocks with the same intensity as the mainshocks, the maximum increment of the residual deformation ratio of the structure is 81.8%, and the average interstory drift ratios of the 12th, 7th, and 3rd stories of the structure are increased by 13.4%, 9.2% and 7.5%, respectively. The strong aftershock may significantly cause increased damage to the structure, and increase its collapse risk and residual deformation

    Highly diastereoselective coupling reactions between chiral benzaldehyde tricarbonylchromium complexes and activated double bonds

    No full text
    The amine catalyzed coupling reaction of acrylic derivatives with benzaldehydes (Baylis-Hillman reaction) is more efficient when the arene is complexed to the electrophilic Cr(CO)3 group. Reactions with planar chiral o-substituted benzaldehyde complexes are highly diastereoselective. 3-Hydroxy-2-methylenealkanoic acid derivatives can be obtained efficiently and with very high enantiomeric excess from readily accessible enantiomerically pure complexes. The configuration of the benzylic stereogenic center relative to the planar chirality of the arene complex was determined in one case by an X-ray structural analysis. The reaction has been extended to an o-anisaldehydeimine complex

    Dexmedetomidine Postconditioning Alleviates Hypoxia/Reoxygenation Injury in Senescent Myocardial Cells by Regulating lncRNA H19 and m6A Modification

    No full text
    H19, a long noncoding RNA (lncRNA), reportedly protects myocardial cells (H9c2 cell line) against hypoxia-reoxygenation- (H/R-) induced injury. Dexmedetomidine (Dex) has an important myocardial protective effect, although its function and mechanism in cardiac ischemia/reperfusion (I/R) injury, especially for senile patients, requires further study. RNA N6-methyladenosine (m6A) is the most abundant endogenous RNA modification. However, the effect of Dex postconditioning on RNA m6A modification has rarely been reported. The aim of this study was to evaluate roles of H19 and m6A modification in Dex postconditioning of aged cardiomyocytes. Hydrogen peroxide (H2O2) was used to induce senescence of H9c2 cells. After 6 h of hypoxia, H9c2 cells were exposed to different concentrations of dexmedetomidine (0, 500 nM, 1 μM, and 2 μM) for 6 h. After knockdown or overexpression of H19 and its downstream gene miR-29b-3p and cellular inhibitor of apoptosis protein 1 (cIAP1), Dex postconditioning experiments were performed to examine effects on myocardial cell injury. Global m6A levels after H/R with or without Dex postconditioning were measured with a colorimetric m6A RNA Methylation Quantification Kit. The mechanism by which RNA m6A methylation regulated genes mediating H19 expression was verified by m6A RNA immunoprecipitation (MeRIP), and the function of Dex postconditioning of aged cardiomyocytes was investigated. Dex postconditioning protected against H/R-induced injury of aged myocardial cells through H19/miR-29b-3p/cIAP1, increased methylation of RNA m6A elicited by H/R, and attenuated H/R-induced injury by suppressing expression of the RNA m6A demethylase gene alkB homolog 5 (ALKBH5). In addition, AKLBH5 regulated the expression of H19, and Dex postconditioning attenuated H/R-induced injury via ALKBH5 in aged cardiomyocytes

    Celastrol Attenuates Inflammatory and Neuropathic Pain Mediated by Cannabinoid Receptor Type 2

    No full text
    Celastrol, a major active ingredient of Chinese herb Tripterygium wilfordii Hook. f. (thunder god vine), has exhibited a broad spectrum of pharmacological activities, including anti-inflammation, anti-cancer and immunosuppression. In the present study, we used animal models of inflammatory pain and neuropathic pain, generated by carrageenan injection and spared nerve injury (SNI), respectively, to evaluate the effect of celastrol and to address the mechanisms underlying pain processing. Intraperitoneal (i.p.) injection of celastrol produced a dose-dependent inhibition of carrageenan-induced edema and allodynia. Real-time PCR analysis showed that celastrol (0.3 mg/kg, i.p.) significantly reduced mRNA expressions of inflammatory cytokines, TNF-α, IL-6, IL-1β, in carrageenan-injected mice. In SNI mice, pain behavior studies showed that celastrol (1 mg/kg, i.p.) effectively prevented the hypersensitivity of mechanical nociceptive response on the third day post-surgery and the seventh day post-surgery. Furthermore, the anti-hyperalgesic effects of celastrol in carrageenan-injected mice and SNI mice were reversed by SR144528 (1 mg/kg, i.p.), a specific cannabinoid receptor-2 (CB2) receptor antagonist, but not by SR141716 (1 mg/kg, i.p.), a specific cannabinoid receptor-1 (CB1) receptor antagonist. Taken together, our results demonstrate the analgesia effects of celastrol through CB2 signaling and propose the potential of exploiting celastrol as a novel candidate for pain relief
    corecore