83 research outputs found
Calculating energy storage due to topological changes in emerging active region NOAA AR 11112
The Minimum Current Corona (MCC) model provides a way to estimate stored
coronal energy using the number of field lines connecting regions of positive
and negative photospheric flux. This information is quantified by the net flux
connecting pairs of opposing regions in a connectivity matrix. Changes in the
coronal magnetic field, due to processes such as magnetic reconnection,
manifest themselves as changes in the connectivity matrix. However, the
connectivity matrix will also change when flux sources emerge or submerge
through the photosphere, as often happens in active regions. We have developed
an algorithm to estimate the changes in flux due to emergence and submergence
of magnetic flux sources. These estimated changes must be accounted for in
order to quantify storage and release of magnetic energy in the corona. To
perform this calculation over extended periods of time, we must additionally
have a consistently labeled connectivity matrix over the entire observational
time span. We have therefore developed an automated tracking algorithm to
generate a consistent connectivity matrix as the photospheric source regions
evolve over time. We have applied this method to NOAA Active Region 11112,
which underwent a GOES M2.9 class flare around 19:00 on Oct.16th, 2010, and
calculated a lower bound on the free magnetic energy buildup of ~8.25 x 10^30
ergs over 3 days.Comment: 36 pages, 14 figures. Published in 2012 ApJ, 749, 64. Published
version available at http://stacks.iop.org/0004-637X/749/64 Animation
available at http://solar.physics.montana.edu/tarrl/data/AR11112.mp
Relating magnetic reconnection to coronal heating
It is clear that the solar corona is being heated and that coronal magnetic
fields undergo reconnection all the time. Here we attempt to show that these
two facts are in fact related - i.e. coronal reconnection generates heat. This
attempt must address the fact that topological change of field lines does not
automatically generate heat. We present one case of flux emergence where we
have measured the rate of coronal magnetic reconnection and the rate of energy
dissipation in the corona. The ratio of these two, , is a current
comparable to the amount of current expected to flow along the boundary
separating the emerged flux from the pre-existing flux overlying it. We can
generalize this relation to the overall corona in quiet Sun or in active
regions. Doing so yields estimates for the contribution to corona heating from
magnetic reconnection. These estimated rates are comparable to the amount
required to maintain the corona at its observed temperature.Comment: To appear in Phil. Trans. Royal Soc.
Heating of Flare Loops With Observationally Constrained Heating Functions
We analyze high cadence high resolution observations of a C3.2 flare obtained
by AIA/SDO on August 1, 2010. The flare is a long duration event with soft
X-ray and EUV radiation lasting for over four hours. Analysis suggests that
magnetic reconnection and formation of new loops continue for more than two
hours. Furthermore, the UV 1600\AA\ observations show that each of the
individual pixels at the feet of flare loops is brightened instantaneously with
a timescale of a few minutes, and decays over a much longer timescale of more
than 30 minutes. We use these spatially resolved UV light curves during the
rise phase to construct empirical heating functions for individual flare loops,
and model heating of coronal plasmas in these loops. The total coronal
radiation of these flare loops are compared with soft X-ray and EUV radiation
fluxes measured by GOES and AIA. This study presents a method to
observationally infer heating functions in numerous flare loops that are formed
and heated sequentially by reconnection throughout the flare, and provides a
very useful constraint to coronal heating models.Comment: This paper is revise
Examination of Separator Reconnection Rates in a Series of Adjacent Emerging/Existing Active Region Pairs
No abstract availabl
- …