546 research outputs found

    The Role of fast magnetosonic waves in the release and conversion via reconnection of energy stored by a current sheet

    Full text link
    Using a simple two-dimensional, zero-beta model, we explore the manner by which reconnection at a current sheet releases and dissipates free magnetic energy. We find that only a small fraction (3%-11% depending on current sheet size) of the energy is stored close enough to the current sheet to be dissipated abruptly by the reconnection process. The remaining energy, stored in the larger-scale field, is converted to kinetic energy in a fast magnetosonic disturbance propagating away from the reconnection site, carrying the initial current and generating reconnection-associated flows (inflow and outflow). Some of this reflects from the lower boundary (the photosphere) and refracts back to the X-point reconnection site. Most of this inward wave energy is reflected back again, and continues to bounce between X-point and photosphere until it is gradually dissipated, over many transits. This phase of the energy dissipation process is thus global and lasts far longer than the initial purely local phase. In the process a significant fraction of the energy (25%-60%) remains as undissipated fast magnetosonic waves propagating away from the reconnection site, primarily upward. This flare-generated wave is initiated by unbalanced Lorentz forces in the reconnection-disrupted current sheet, rather than by dissipation-generated pressure, as some previous models have assumed. Depending on the orientation of the initial current sheet the wave front is either a rarefaction, with backward directed flow, or a compression, with forward directed flow

    Direct Measurements of Magnetic Twist in the Solar Corona

    Full text link
    In the present work we study evolution of magnetic helicity in the solar corona. We compare the rate of change of a quantity related to the magnetic helicity in the corona to the flux of magnetic helicity through the photosphere and find that the two rates are similar. This gives observational evidence that helicity flux across the photosphere is indeed what drives helicity changes in solar corona during emergence. For the purposes of estimating coronal helicity we neither assume a strictly linear force-free field, nor attempt to construct a non-linear force-free field. For each coronal loop evident in Extreme Ultraviolet (EUV) we find a best-matching line of a linear force-free field and allow the twist parameter alpha to be different for each line. This method was introduced and its applicability was discussed in Malanushenko et. al. (2009). The object of the study is emerging and rapidly rotating AR 9004 over about 80 hours. As a proxy for coronal helicity we use the quantity averaged over many reconstructed lines of magnetic field. We argue that it is approximately proportional to "flux-normalized" helicity H/Phi^2, where H is helicity and Phi is total enclosed magnetic flux of the active region. The time rate of change of such quantity in the corona is found to be about 0.021 rad/hr, which is compatible with the estimates for the same region obtained using other methods Longcope et. al. (2007), who estimated the flux of normalized helicity of about 0.016 rad/hr

    Effects of partitioning and extrapolation on the connectivity of potential magnetic fields

    Full text link
    Coronal magnetic field may be characterized by how its field lines interconnect regions of opposing photospheric flux -- its connectivity. Connectivity can be quantified as the net flux connecting pairs of opposing regions, once such regions are identified. One existing algorithm will partition a typical active region into a number of unipolar regions ranging from a few dozen to a few hundred, depending on algorithmic parameters. This work explores how the properties of the partitions depend on some algorithmic parameters, and how connectivity depends on the coarseness of partitioning for one particular active region magnetogram. We find the number of connections among them scales with the number of regions even as the number of possible connections scales with its square. There are several methods of generating a coronal field, even a potential field. The field may be computed inside conducting boundaries or over an infinite half-space. For computation of connectivity, the unipolar regions may be replaced by point sources or the exact magnetogram may be used as a lower boundary condition. Our investigation shows that the connectivities from these various fields differ only slightly -- no more than 15%. The greatest difference is between fields within conducting walls and those in the half-space. Their connectivities grow more different as finer partitioning creates more source regions. This also gives a quantitative means of establishing how far away conducting boundaries must be placed in order not to significantly affect the extrapolation. For identical outer boundaries, the use of point sources instead of the exact magnetogram makes a smaller difference in connectivity: typically 6% independent of the number of source regions

    Slow shocks and conduction fronts from Petschek reconnection of skewed magnetic fields: two-fluid effects

    Full text link
    In models of fast magnetic reconnection, flux transfer occurs within a small portion of a current sheet triggering stored magnetic energy to be thermalized by shocks. When the initial current sheet separates magnetic fields which are not perfectly anti-parallel, i.e. they are skewed, magnetic energy is first converted to bulk kinetic energy and then thermalized in slow magnetosonic shocks. We show that the latter resemble parallel shocks or hydrodynamic shocks for all skew angles except those very near the anti-parallel limit. As for parallel shocks, the structures of reconnection-driven slow shocks are best studied using two-fluid equations in which ions and electrons have independent temperature. Time-dependent solutions of these equations can be used to predict and understand the shocks from reconnection of skewed magnetic fields. The results differ from those found using a single-fluid model such as magnetohydrodynamics. In the two-fluid model electrons are heated indirectly and thus carry a heat flux always well below the free-streaming limit. The viscous stress of the ions is, however, typically near the fluid-treatable limit. We find that for a wide range of skew angles and small plasma beta an electron conduction front extends ahead of the slow shock but remains within the outflow jet. In such cases conduction will play a more limited role in driving chromospheric evaporation than has been predicted based on single-fluid, anti-parallel models

    Reconstructing the Local Twist of Coronal Magnetic Fields and the Three-Dimensional Shape of the Field Lines from Coronal Loops in EUV and X-Ray Images

    Full text link
    Non-linear force-free fields are the most general case of force-free fields, but the hardest to model as well. There are numerous methods of computing such fields by extrapolating vector magnetograms from the photosphere, but very few attempts have so far made quantitative use of coronal morphology. We present a method to make such quantitative use of X-Ray and EUV images of coronal loops. Each individual loop is fit to a field line of a linear force-free field, allowing the estimation of the field line's twist, three-dimensional geometry and the field strength along it. We assess the validity of such a reconstruction since the actual corona is probably not a linear force-free field and that the superposition of linear force-free fields is generally not itself a force-free field. To do so, we perform a series of tests on non-linear force-free fields, described in Low & Lou (1990). For model loops we project field lines onto the photosphere. We compare several results of the method with the original field, in particular the three-dimensional loop shapes, local twist (coronal alpha), distribution of twist in the model photosphere and strength of the magnetic field. We find that, (i) for these trial fields, the method reconstructs twist with mean absolute deviation of at most 15% of the range of photospheric twist, (ii) that heights of the loops are reconstructed with mean absolute deviation of at most 5% of the range of trial heights and (iii) that the magnitude of non-potential contribution to photospheric field is reconstructed with mean absolute deviation of at most 10% of the maximal value.Comment: submitted to Ap
    corecore