29 research outputs found
Recommended from our members
The Power Systems Development Facility at Wilsonville, Alabama
One of the Morgantown Energy Technology Center`s (METC`s) goals is to: {open_quotes}Commercialize Advanced Power Systems with improved environmental performance, higher efficiency, and lower cost. {close_quotes} Advanced coal-based power generation systems include Integrated Gasification Combined Cycle (IGCC), Pressurized Fluidized- Bed Combustion (PFBC), and Integrated Gasification/Fuel Cell systems. The strategy for achieving this goal includes: (1) Show the improved performance and lower cost of Advanced Power Systems through successful Clean Coal Technology demonstration projects, (2) Build and operate Technology Integration Sites in partnership with U.S. Industry (these sites will resolve key technology issues and effect continuous product improvement, and these partnerships result in leveraging of research and development (R&D) funds), and (3) Set up partnerships with other agencies and organizations such as Electric Power Research Institute (EPRI) to leverage R&D funds and skills. Demonstration of practical high-temperature particulate control devices (PCD`s) is crucial to the evolution of advanced, high- efficiency coal-based power generation systems. There are stringent particulate requirements for the fuel gas for both turbines and fuel cells. In turbines, the particulates cause erosion and chemical attack of the blade surfaces. In fuel cells, the particulates cause blinding of the electrodes. Filtration of the incoming, hot, pressurized gas is required to protect these units. Although filtration can presently be performed by first cooling the gas, the system efficiency is reduced. Development of high temperature, high pressure filtration is necessary to achieve high efficiency and extend the lifetime of downstream components to acceptable levels
Linear friction weld process monitoring of fixture cassette deformations using empirical mode decomposition
Due to its inherent advantages, linear friction welding is a solid-state joining process of increasing importance to the aerospace, automotive, medical and power generation equipment industries. Tangential oscillations and forge stroke during the burn-off phase of the joining process introduce essential dynamic forces, which can also be detrimental to the welding process. Since burn-off is a critical phase in the manufacturing stage, process monitoring is fundamental for quality and stability control purposes. This study aims to improve workholding stability through the analysis of fixture cassette deformations. Methods and procedures for process monitoring are developed and implemented in a fail-or-pass assessment system for fixture cassette deformations during the burn-off phase. Additionally, the de-noised signals are compared to results from previous production runs. The observed deformations as a consequence of the forces acting on the fixture cassette are measured directly during the welding process. Data on the linear friction-welding machine are acquired and de-noised using empirical mode decomposition, before the burn-off phase is extracted. This approach enables a direct, objective comparison of the signal features with trends from previous successful welds. The capacity of the whole process monitoring system is validated and demonstrated through the analysis of a large number of signals obtained from welding experiments
Recommended from our members
Particulate Control Device (PCD) Testing at the Power Systems Development Facility, Wilsonville, Alabama
One of the U.S. Department of Energy`s (DOE`s) objectives overseen by the Morgantown Energy Technology Center (METC) is to test systems and components for advanced coal-based power generation systems, including integrated gasification combined cycle (IGCC), pressurized fluidized-bed combustion (PFBC), and integrated gasification/fuel cell (IGFC) systems. Stringent particulate requirements for fuel gas for both combustion turbines and fuel cells that are integral to these systems. Particulates erode and chemically attack the blade surfaces in turbines, and cause blinding of the electrodes in fuel cells. Filtration of the hot, high-pressure, gasified coal is required to protect these units. Filtration can be accomplished by first cooling the gas, but the system efficiency is reduced. High-temperature, high-pressure, particulate control devices (PCDs) need to be developed to achieve high efficiency and to extend the lifetime of downstream components to acceptable levels. Demonstration of practical high-temperature PCDs is crucial to the evolution of advanced, high-efficiency, coal-based power generation systems. The intent at the Power Systems Development Facility (PSDF) is to establish a flexible test facility that can be used to (1) develop advanced power system components, such as high-temperature, high-pressure PCDs; (2) evaluate advanced power system configurations and (3) assess the integration and control issues of these advanced power systems
Heavy recycle solvent studies in two-stage coal liquefaction. Final technical report, September 1, 1982-December 30, 1983
The objective of this program has been to study the chemistry of the components with high boiling points in a direct coal liquefaction recycle solvent and to identify those components which lead to higher overall yields and improved product stability in the initial coal dissolution step of direct coal liquefaction processes. The major conclusions are: -454 C recycle solvent is primarily aromatic hydrocarbons (73%) and contains almost no asphaltenes; +454 C recycle solvent is primarily asphaltenes and aromatic hydrocarbons; recycle solvent also contains aliphatic hydrocarbons, N-containing aromatics and O-containing aromatics; heteroatoms in coal derived materials seem to be grouped by type, i.e. acidic O and basic N and sulfur occur together; under helium a small net amount of hydrogen and more CO and CO/sub 2/ are produced than under hydrogen; under hydrogen the amounts of H/sub 2/S and hydrocarbon gases are increased and a small amount of hydrogen gas is usually consumed; overall coal conversions to THF solubles are improved by adding more -454 C solvent but decreased by adding +454 C solvent; for added fractions of -454 C solvent the pecent conversion to THF solubles increases in the order aromatic hydrocarbons (+7.2) > aliphatic hydrocarbons (+0.8) > no added solvent (0.0) > N-containing aromatics (-0.9) > O-containing aromatics (-22.1); percent conversion to THF solubles using -454 C solvent with +454 C solvent fractions added decrease in the order aliphatics (+3.7) > aromatic hydrocarbons (+3.0) > no added solvent (0.0) > O-containing aromatics (-9.3) > N-containing aromatics (-13.3); of the +454 C solvent components, aromatic hydrocarbons and aliphatic hydrocarbons are beneficial but total only approx. 25% of the +454 C recycle solvent; and steric effects may be important in determining the effectiveness of the heavier solvent components as liquefaction solvents. 28 references, 25 figures, 31 tables
Real-Time Measurement for an Internal Grinding System
M.S.Thomas R. Kurfes
The Skybox Satellite Operator Intern Program - Benefits and Lessons Learned
The Skybox Flight Operator program trains rotating cohorts of college students and recent graduates to fly our constellation of microsatellites. This program has provided significant benefits for Skybox Flight Operations. First, it attracts highly motivated, energized people, who are interested in the many short-term growth opportunities offered by the role, but who may not be interested in a shift-based role with few long-term growth opportunities. Staffing skilled and motivated individuals allows us to quickly adapt to changes in mission needs; this agility is crucial to a rapidly evolving flight operations system. Second, the recurring training for each cohort keeps other engineering teams engaged, catalyzing interactions and improving the knowledge and abilities of our team. Third, the program has brought a stream of talent into our company, creating a pipeline of full time employment candidates that already understand our satellite fleet. We believe that our program has maintained the health and safety of our satellites, while providing valuable skills and experience to the program participants. In this paper we explain these benefits, and examine the lessons we have learned after two years of running this evolving program