39,148 research outputs found
Single and Many Particle Correlation Functions and Uniform Phase Bases for Strongly Correlated Systems
The need for suitable many or infinite fermion correlation functions to
describe some low dimensional strongly correlated systems is discussed. This is
linked to the need for a correlated basis, in which the ground state may be
postive definite, and in which single particle correlations may suffice. A
particular trial basis is proposed, and applied to a certain quasi-1D model.
The model is a strip of the 2D square lattice wrapped around a cylinder, and is
related to the ladder geometries, but with periodic instead of open boundary
conditions along the edges. Analysis involves a novel mean-field approach and
exact diagonalisation. The model has a paramagnetic region and a Nagaoka
ferromagnetic region. The proposed basis is well suited to the model, and
single particle correlations in it have power law decay for the paramagnet,
where the charge motion is qualitatively hard core bosonic. The mean field also
leads to a BCS-type model with single particle long range order.Comment: 23 pages, in plain tex, 12 Postscript figures included. Accepted for
publication in J.Physics : Condensed Matte
Non-destructive method for applying and removing instrumentation on helicopter rotor blades
A nondestructive method of applying and removing instrumentation on airfoils
PAMELA: An Open-Source Software Package for Calculating Nonlocal Exact Exchange Effects on Electron Gases in Core-Shell Nanowires
We present a new pseudospectral approach for incorporating many-body,
nonlocal exact exchange interactions to understand the formation of electron
gases in core-shell nanowires. Our approach is efficiently implemented in the
open-source software package PAMELA (Pseudospectral Analysis Method with
Exchange & Local Approximations) that can calculate electronic energies,
densities, wavefunctions, and band-bending diagrams within a self-consistent
Schrodinger-Poisson formalism. The implementation of both local and nonlocal
electronic effects using pseudospectral methods is key to PAMELA's efficiency,
resulting in significantly reduced computational effort compared to
finite-element methods. In contrast to the new nonlocal exchange formalism
implemented in this work, we find that the simple, conventional
Schrodinger-Poisson approaches commonly used in the literature (1) considerably
overestimate the number of occupied electron levels, (2) overdelocalize
electrons in nanowires, and (3) significantly underestimate the relative energy
separation between electronic subbands. In addition, we perform several
calculations in the high-doping regime that show a critical tunneling depth
exists in these nanosystems where tunneling from the core-shell interface to
the nanowire edge becomes the dominant mechanism of electron gas formation.
Finally, in order to present a general-purpose set of tools that both
experimentalists and theorists can easily use to predict electron gas formation
in core-shell nanowires, we document and provide our efficient and
user-friendly PAMELA source code that is freely available at
http://alum.mit.edu/www/usagiComment: Accepted by AIP Advance
Direct frequency comb laser cooling and trapping
Continuous wave (CW) lasers are the enabling technology for producing
ultracold atoms and molecules through laser cooling and trapping. The resulting
pristine samples of slow moving particles are the de facto starting point for
both fundamental and applied science when a highly-controlled quantum system is
required. Laser cooled atoms have recently led to major advances in quantum
information, the search to understand dark energy, quantum chemistry, and
quantum sensors. However, CW laser technology currently limits laser cooling
and trapping to special types of elements that do not include highly abundant
and chemically relevant atoms such as hydrogen, carbon, oxygen, and nitrogen.
Here, we demonstrate that Doppler cooling and trapping by optical frequency
combs may provide a route to trapped, ultracold atoms whose spectra are not
amenable to CW lasers. We laser cool a gas of atoms by driving a two-photon
transition with an optical frequency comb, an efficient process to which every
comb tooth coherently contributes. We extend this technique to create a
magneto-optical trap (MOT), an electromagnetic beaker for accumulating the
laser-cooled atoms for further study. Our results suggest that the efficient
frequency conversion offered by optical frequency combs could provide a key
ingredient for producing trapped, ultracold samples of nature's most abundant
building blocks, as well as antihydrogen. As such, the techniques demonstrated
here may enable advances in fields as disparate as molecular biology and the
search for physics beyond the standard model.Comment: 10 pages, 5 figure
The magnetic structure of Gd_2Ti_2O_7
We attempt to solve the magnetic structure of the gadolinium analogue of
`spin-ice', using a mixture of experimental and theoretical assumptions. The
eventual predictions are essentially consistent with both the Mossbauer and
neutron measurements but are unrelated to previous proposals. We find two
possible distinct states, one of which is coplanar and the other is fully
three-dimensional. We predict that close to the initial transition the
preferred state is coplanar but that at the lowest temperature the ground-state
becomes fully three-dimensional. Unfortunately the energetics are consequently
complicated. There is a dominant nearest-neighbour Heisenberg interaction but
then a compromise solution for lifting the final degeneracy resulting from a
competition between longer-range Heisenberg interactions and direct dipolar
interactions on similar energy scales.Comment: 12 pages, 15 figure
A New Linear Inductive Voltage Adder Driver for the Saturn Accelerator
Saturn is a dual-purpose accelerator. It can be operated as a large-area
flash x-ray source for simulation testing or as a Z-pinch driver especially for
K-line x-ray production. In the first mode, the accelerator is fitted with
three concentric-ring 2-MV electron diodes, while in the Z-pinch mode the
current of all the modules is combined via a post-hole convolute arrangement
and driven through a cylindrical array of very fine wires. We present here a
point design for a new Saturn class driver based on a number of linear
inductive voltage adders connected in parallel. A technology recently
implemented at the Institute of High Current Electronics in Tomsk (Russia) is
being utilized[1].
In the present design we eliminate Marx generators and pulse-forming
networks. Each inductive voltage adder cavity is directly fed by a number of
fast 100-kV small-size capacitors arranged in a circular array around each
accelerating gap. The number of capacitors connected in parallel to each cavity
defines the total maximum current. By selecting low inductance switches,
voltage pulses as short as 30-50-ns FWHM can be directly achieved.Comment: 3 pages, 4 figures. This paper is submitted for the 20th Linear
Accelerator Conference LINAC2000, Monterey, C
Precipitation detector Patent
Precipitation detector and mechanism for stopping and restarting machinery at initiation and cessation of rai
Pragmatic View of Short-Baseline Neutrino Oscillations
We present the results of global analyses of short-baseline neutrino
oscillation data in 3+1, 3+2 and 3+1+1 neutrino mixing schemes. We show that
the data do not allow us to abandon the simplest 3+1 scheme in favor of the
more complex 3+2 and 3+1+1 schemes. We present the allowed region in the 3+1
parameter space, which is located at between 0.82 and 2.19
at . The case of no oscillations is disfavored by about
, which decreases dramatically to about if the LSND data are
not considered. Hence, new high-precision experiments are needed to check the
LSND signal.Comment: 6 pages. Final version published in Phys. Rev. D 88, 073008 (2013
- …