2 research outputs found
Comment on the sign of the Casimir force
I show that reflection positivity implies that the force between any mirror
pair of charge-conjugate probes of the quantum vacuum is attractive. This
generalizes a recent theorem of Kenneth and Klich to interacting quantum
fields, to arbitrary semiclassical bodies, and to quantized probes with
non-overlapping wavefunctions. I also prove that the torques on
charge-conjugate probes tend always to rotate them into a mirror-symmetric
position.Comment: 13 pages, 1 figure, Latex file. Several points clarified and
expanded, two references added
Acceleressence: Dark Energy from a Phase Transition at the Seesaw Scale
Simple models are constructed for "acceleressence" dark energy: the latent
heat of a phase transition occurring in a hidden sector governed by the seesaw
mass scale v^2/M_Pl, where v is the electroweak scale and M_Pl the
gravitational mass scale. In our models, the seesaw scale is stabilized by
supersymmetry, implying that the LHC must discover superpartners with a
spectrum that reflects a low scale of fundamental supersymmetry breaking.
Newtonian gravity may be modified by effects arising from the exchange of
fields in the acceleressence sector whose Compton wavelengths are typically of
order the millimeter scale. There are two classes of models. In the first class
the universe is presently in a metastable vacuum and will continue to inflate
until tunneling processes eventually induce a first order transition. In the
simplest such model, the range of the new force is bounded to be larger than 25
microns in the absence of fine-tuning of parameters, and for couplings of order
unity it is expected to be \approx 100 microns. In the second class of models
thermal effects maintain the present vacuum energy of the universe, but on
further cooling, the universe will "soon" smoothly relax to a matter dominated
era. In this case, the range of the new force is also expected to be of order
the millimeter scale or larger, although its strength is uncertain. A firm
prediction of this class of models is the existence of additional energy
density in radiation at the eV era, which can potentially be probed in
precision measurements of the cosmic microwave background. An interesting
possibility is that the transition towards a matter dominated era has occurred
in the very recent past, with the consequence that the universe is currently
decelerating.Comment: 10 pages, references adde