60 research outputs found

    Role of lipid microdomains in TLR-mediated signalling.

    Get PDF
    This is the accepted manuscript. The final version is available at http://www.sciencedirect.com/science/article/pii/S0005273615000930.Over the last twenty years, evidence has been provided that the plasma membrane is partitioned with microdomains, laterally mobile in the bilayer, providing the necessary microenvironment to specific membrane proteins for signalling pathways to be initiated. We discuss here the importance of such microdomains for Toll-like receptors (TLR) localization and function. First, lipid microdomains favour recruitment and clustering of the TLR machinery partners, i.e. receptors and co-receptors previously identified to be required for ligand recognition and signal transmission. Further, the presence of the so-called Cholesterol Recognition Amino-Acid Consensus (CRAC) sequences in the intracellular juxtamembrane domain of several Toll-like receptors suggests a direct role of cholesterol in the activation process. This article is part of a Special Issue entitled: Lipid-protein interactions.C.L. is an IEF Marie Curie Action Research Fellow (TLR4-CAT PIEF-GA-2012-326481)

    Critical residues involved in Toll-like receptor 4 activation by cationic lipid nanocarriers are not located at the lipopolysaccharide-binding interface.

    Get PDF
    DiC14-amidine is a cationic lipid that was originally designed as a lipid nanocarrier for nucleic acid transport, and turned out to be a Toll-like receptor 4 (TLR4) agonist as well. We found that while E. coli lipopolysaccharide (LPS) is a TLR4 agonist in all species, diC14-amidine nanoliposomes are full agonists for human, mouse and cat receptors but weak horse agonists. Taking advantage of this unusual species specificity, we used chimeric constructs based on the human and horse sequences and identified two regions in the human TLR4 that modulate the agonist activity of diC14-amidine. Interestingly, these regions lie outside the known LPS-binding domain. Competition experiments also support our hypothesis that diC14-amidine interacts primarily with TLR4 hydrophobic crevices located at the edges of the TLR4/TLR4* dimerization interface. We have characterized potential binding modes using molecular docking analysis and suggest that diC14-amidine nanoliposomes activate TLR4 by facilitating its dimerization in a process that is myeloid differentiation 2 (MD-2)-dependent and cluster of differentiation 14 (CD14)-independent. Our data suggest that TLR4 may be activated through binding at different anchoring points, expanding the repertoire of TLR4 ligands to non-MD-2-binding lipids.C.L. is a IEF Marie Curie Action Research Fellow (TLR4-CAT PIEF-GA-2012-326481) and would like to thank the Wiener-Anspach Foundation for financial support. K.L.I. was supported by a HBLB Veterinary Research Training scholarship. This work was supported by program grant support from the Wellcome Trust and the MRC to N.J.G and C.E.B.This is the final version of the article. It first appeared from Springer via http://dx.doi.org/10.1007/s00018-015-1915-

    Study protocol for THINK : a multinational open-label phase I study to assess the safety and clinical activity of multiple administrations of NKR-2 in patients with different metastatic tumour types

    Get PDF
    Introduction: NKR-2 are autologous T cells genetically modified to express a chimeric antigen receptor (CAR) comprising a fusion of the natural killer group 2D (NKG2D) receptor with the CD3 zeta signalling domain, which associates with the adaptor molecule DNAX-activating protein of 10 kDa (DAP10) to provide co-stimulatory signal upon ligand binding. NKG2D binds eight different ligands expressed on the cell surface of many tumour cells and which are normally absent on non-neoplastic cells. In preclinical studies, NKR-2 demonstrated long-term antitumour activity towards a breadth of tumour indications, with maximum efficacy observed after multiple NKR-2 administrations. Importantly, NKR-2 targeted tumour cells and tumour neovasculature and the local tumour immunosuppressive microenvironment and this mechanism of action of NKR-2 was established in the absence of preconditioning. Methods and analysis: This open-label phase I study will assess the safety and clinical activity of NKR-2 treatment administered three times, with a 2-week interval between each administration in different tumour types. The study will contain two consecutive segments: a dose escalation phase followed by an expansion phase. The dose escalation study involves two arms, one in solid tumours (five specific indications) and one in haematological tumours (two specific indications) and will include three dose levels in each arm: 3x10(8), 1x10(9) and 3x10(9) NKR-2 per injection. On the identification of the recommended dose in the first segment, based on dose-limiting toxicity occurrences, the study will expand to seven different cohorts examining the seven different tumour types separately. Clinical responses will be determined according to standard Response Evaluation Criteria In Solid Tumors (RECIST) criteria for solid tumours or international working group response criteria in haematological tumours. Ethics approval and dissemination: Ethical approval has been obtained at all sites. Written informed consent will be taken from all participants. The results of this study will be disseminated through presentation at international scientific conferences and reported in peer-reviewed scientific journals

    Saturation of acyl chains converts cardiolipin from an antagonist to an activator of Toll-like receptor-4

    Get PDF
    Abstract: Cardiolipins (CLs) are tetra-acylated diphosphatidylglycerols found in bacteria, yeast, plants, and animals. In healthy mammals, CLs are unsaturated, whereas saturated CLs are found in blood cells from Barth syndrome patients and in some Gram-positive bacteria. Here, we show that unsaturated but not saturated CLs block LPS-induced NF-κB activation, TNF-α and IP-10 secretion in human and murine macrophages, as well as LPS-induced TNF-α and IL-1β release in human blood mononuclear cells. Using HEK293 cells transfected with Toll-like receptor 4 (TLR4) and its co-receptor Myeloid Differentiation 2 (MD2), we demonstrate that unsaturated CLs compete with LPS for binding TLR4/MD2 preventing its activation, whereas saturated CLs are TLR4/MD2 agonists. As a consequence, saturated CLs induce a pro-inflammatory response in macrophages characterized by TNF-α and IP-10 secretion, and activate the alternative NLRP3 inflammasome pathway in human blood-derived monocytes. Thus, we identify that double bonds discriminate between anti- and pro-inflammatory properties of tetra-acylated molecules, providing a rationale for the development of TLR4 activators and inhibitors for use as vaccine adjuvants or in the treatment of TLR4-related diseases. Graphical abstract

    Propriétés anti-inflammatoires des lipides cationiques: rôle des phospholipides

    No full text
    Les lipides cationiques sont des molécules amphiphiles chargées positivement et couramment utilisées comme vecteur de transfection tant in vitro qu'in vivo avec une bonne efficacité. Cependant, la transfection in vivo par voie intraveineuse à l'aide de complexes lipides cationiques/ADN (lipoplexes) induit une réponse inflammatoire, attribuée à la présence de séquences CpG dans les plasmides transportés, et qui limite l'efficacité de transfection des complexes.Il a été montré dans notre laboratoire que la pré-injection de liposomes de diC14-amidine, un lipide cationique mis au point dans notre laboratoire, avant l'injection des lipoplexes diC14-amidine/ADN permettait d'augmenter l'efficacité de transfection tout en diminuant la production de TNF-¦Á dans le sérum [Elouahabi et al. 2003b]. Ce résultat suggérait une nouvelle propriété anti-inflammatoire de la diC14-amidine dans le cas d'une inflammation causée par les lipoplexes de diC14-amidine/ADN. Dans le présent travail, nous d¨¦montrons que les macrophages de la rate sont les principales cellules productrices de TNF-¦Á suite à l'injection intraveineuse des lipoplexes à des souris. Ces mêmes cellules sont également la principale cible des liposomes de diC14-amidine après injection intraveineuse. Nous avons dès lors centré notre étude sur ce type cellulaire, en utilisant une lignée établie de macrophages murins. Nos résultats ont permis de confirmer la capacité des liposomes de diC14-amidine à inhiber la sécrétion des cytokines pro-inflammatoires induites par des séquences CpG, des lipopolysaccharides ou des poly(I :C). Fait intéressant, la présence de sérum est indispensable à la propriété anti-inflammatoire des liposomes de diC14-amidine. Par fractionnement successifs des composants du sérum, nous avons pu montrer que seuls les phospholipides des lipoprotéines pouvaient conférer cette propriété aux liposomes de diC14-amidine. Doctorat en sciences agronomiques et ingénierie biologiqueinfo:eu-repo/semantics/nonPublishe

    Role of lipid microdomains in TLR-mediated signalling

    Get PDF
    Over the last twenty years, evidence has been provided that the plasma membrane is partitioned with microdomains, laterally mobile in the bilayer, providing the necessary microenvironment to specific membrane proteins for signalling pathways to be initiated. We discuss here the importance of such microdomains for Toll-like receptors (TLR) localization and function. First, lipid microdomains favour recruitment and clustering of the TLR machinery partners, i.e. receptors and co-receptors previously identified to be required for ligand recognition and signal transmission. Further, the presence of the so-called Cholesterol Recognition Amino-Acid Consensus (CRAC) sequences in the intracellular juxtamembrane domain of several Toll-like receptors suggests a direct role of cholesterol in the activation process. This article is part of a Special Issue entitled: Lipid-protein interactions.SCOPUS: re.jinfo:eu-repo/semantics/publishe
    corecore