63 research outputs found

    RNA-seq-based genome annotation and identification of long-noncoding RNAs in the grapevine cultivar ‘Riesling’

    Get PDF
    Background: The technological advances of RNA-seq and de novo transcriptome assembly have enabled genome annotation and transcriptome profiling in highly heterozygous species such as grapevine (Vitis vinifera L.). This work is an attempt to utilize a de novo-assembled transcriptome of the V. vinifera cultivar ‘Riesling’ to improve annotation of the grapevine reference genome sequence. Results: Here we show that the transcriptome assembly of a single V. vinifera cultivar is insufficient for a complete genome annotation of the grapevine reference genome constructed from V. vinifera PN40024. Further, we provide evidence that the gene models we identified cannot be completely anchored to the previously published V. vinifera PN40024 gene models. In addition to these findings, we present a computational pipeline for the de novo identification of lncRNAs. Our results demonstrate that, in grapevine, lncRNAs are significantly different from protein coding transcripts in such metrics as length, GC-content, minimum free energy, and length-corrected minimum free energy. Conclusions: In grapevine, high-level heterozygosity necessitates that transcriptome characterization be based on cultivar-specific reference genome sequences. Our results strengthen the hypothesis that lncRNAs have thermodynamically different properties than protein-coding RNAs. The analyses of both coding and non-coding RNAs will be instrumental in uncovering inter-cultivar variation in wild and cultivated grapevine species

    Contributions of the VitisGen2 project to grapevine breeding and genetics

    Get PDF
    The VitisGen projects (2011-2022) have improved the tools available for breeding new grapevine cultivars with regional adaptation, high quality, and disease resistance. VitisGen2 (the second project in the series) was a multi-state collaboration (USDA-Geneva, New York; University of California, Davis; USDA-Parlier, California; Cornell University; Missouri State University; University of Minnesota; South Dakota State University; Washington State University; North Dakota State University; and E&J Gallo, California) to develop improved genetic mapping technology; to identify useful DNA marker-trait associations; and to incorporate marker-assisted selection (MAS) into breeding programs. A novel genetic mapping platform (rhAmpSeq) now provides 2000 + markers that are transferable across the Vitis genus. rhAmpSeq has been used in California, New York, Missouri, and South Dakota to identify new QTL for powdery and downy mildew resistance. In addition, fruit/flower traits that would normally take years to phenotype have been associated with predictive markers accessible from seedling DNA (e.g. malate metabolism, anthocyanin acylation, bloom phenology and flower sex). Since 2011, the project has used MAS to screen thousands of grape seedlings from public breeding programs in the United States and has produced “Ren- Stack” public domain lines to enable simultaneous access to 4 or 6 powdery mildew resistance loci from single source genotypes. High-throughput phenotyping for powdery and downy mildew resistance has been revolutionized with the Blackbird automated-imaging system powered by artificial intelligence for image analysis. Affordable DNA sequencing along with phenotyping innovations are transforming grapevine breeding

    Rootstock Effects on Scion Phenotypes in a ‘Chambourcin’ Experimental Vineyard

    Get PDF
    Understanding how root systems modulate shoot system phenotypes is a fundamental question in plant biology and will be useful in developing resilient agricultural crops. Grafting is a common horticultural practice that joins the roots (rootstock) of one plant to the shoot (scion) of another, providing an excellent method for investigating how these two organ systems affect each other. In this study, we used the French-American hybrid grapevine ‘Chambourcin’ (Vitis L.) as a model to explore the rootstock–scion relationship. We examined leaf shape, ion concentrations, and gene expression in ‘Chambourcin’ grown ungrafted as well as grafted to three different rootstocks (‘SO4’, ‘1103P’ and ‘3309C’) across 2 years and three different irrigation treatments. We found that a significant amount of the variation in leaf shape could be explained by the interaction between rootstock and irrigation. For ion concentrations, the primary source of variation identified was the position of a leaf in a shoot, although rootstock and rootstock by irrigation interaction also explained a significant amount of variation for most ions. Lastly, we found rootstock-specific patterns of gene expression in grafted plants when compared to ungrafted vines. Thus, our work reveals the subtle and complex effect of grafting on ‘Chambourcin’ leaf morphology, ionomics, and gene expression

    Berry Anthocyanin, Acid, and Volatile Trait Analyses in a Grapevine-Interspecific F2 Population Using an Integrated GBS and rhAmpSeq Genetic Map

    Get PDF
    Increased map density and transferability of markers are essential for the genetic analysis of fruit quality and stress tolerance in interspecific grapevine populations. We used 1449 GBS and 2000 rhAmpSeq markers to develop a dense map for an interspecific F2 population (VRS-F2) that was derived by selfing a single F1 from a Vitis riparia x ‘Seyval blanc’ cross. The resultant map contained 2519 markers spanning 1131.3 cM and was highly collinear with the Vitis vinifera ‘PN40024’ genome. Quantitative trait loci (QTL) for berry skin color and flower type were used to validate the map. Four rhAmpSeq transferable markers were identified that can be used in pairs (one pistillate and one hermaphroditic) to predict pistillate and hermaphrodite flower type with ≥99.7% accuracy. Total and individual anthocyanin diglucoside QTL mapped to chromosome 9 near a 5-O-GLUCOSYLTRANSFERASE candidate gene. Malic acid QTL were observed on chromosome 1 and 6 with two MALATE DEHYRDROGENASE CYTOPLASMIC 1 and ALUMINUM-ACTIVATED MALATE TRANSPORTER 2-LIKE (ALMT) candidate genes, respectively. Modeling malic acid identified a potential QTL on chromosome 8 with peak position in proximity of another ALMT. A first-ever reported QTL for the grassy smelling volatile (E)-2-hexenal was found on chromosome 2 with a PHOSPHOLIPID HYDROPEROXIDE GLUTATHIONE PEROXIDASE candidate gene near peak markers

    Toward the Elucidation of Cytoplasmic Diversity in North American Grape Breeding Programs

    Get PDF
    Plants have an intriguing tripartite genetic system: Nuclear genome 9 Mitochondria 9 Plastids and their interactions may impact germplasm breeding. In grapevine, the study of cytoplasmic genomes has been limited, and their role with respect to grapevine germplasm diversity has yet to be elucidated. In the present study, the results of an analysis of the cytoplasmic diversity among 6073 individuals (comprising cultivars, interspecific hybrids and segregating progenies) are presented. Genotyping by sequencing (GBS) was used to elucidate plastid and mitochondrial DNA sequences, and results were analyzed using multivariate techniques. Single nucleotide polymorphism (SNP) effects were annotated in reference to plastid and mitochondrial genome sequences. The cytoplasmic diversity identified was structured according to synthetic domestication groups (wine and raisin/table gr.ape types) and interspecific-hybridization-driven groups with introgression from North American Vitis species, identifying five cytoplasmic groups and four major clusters. Fifty-two SNP markers were used to describe the diversity of the germplasm. Ten organelle genes showed distinct SNP annotations and effect predictions, of which six were chloroplast-derived and three were mitochondrial genes, in addition to one mitochondrial SNP affecting a nonannotated open reading frame. The results suggest that the application of GBS will aid in the study of cytoplasmic genomes in grapevine, which will enable further studies on the role of cytoplasmic genomes in grapevine germplasm, and then allow the exploitation of these sources of diversity in breeding

    Multi-dimensional Leaf Phenotypes Reflect Root System Genotype in Grafted Grapevine Over the Growing Season

    Get PDF
    Modern biological approaches generate volumes of multi-dimensional data, offering unprecedented opportunities to address biological questions previously beyond reach owing to small or subtle effects. A fundamental question in plant biology is the extent to which below-ground activity in the root system influences above-ground phenotypes expressed in the shoot system. Grafting, an ancient horticultural practice that fuses the root system of one individual (the rootstock) with the shoot system of a second, genetically distinct individual (the scion), is a powerful experimental system to understand below-ground effects on above-ground phenotypes. Previous studies on grafted grapevines have detected rootstock influence on scion phenotypes including physiology and berry chemistry. However, the extent of the rootstock\u27s influence on leaves, the photosynthetic engines of the vine, and how those effects change over the course of a growing season, are still largely unknown

    The Establishment of Genetically Engineered Canola Populations in the U.S.

    Get PDF
    Concerns regarding the commercial release of genetically engineered (GE) crops include naturalization, introgression to sexually compatible relatives and the transfer of beneficial traits to native and weedy species through hybridization. To date there have been few documented reports of escape leading some researchers to question the environmental risks of biotech products. In this study we conducted a systematic roadside survey of canola (Brassica napus) populations growing outside of cultivation in North Dakota, USA, the dominant canola growing region in the U.S. We document the presence of two escaped, transgenic genotypes, as well as non-GE canola, and provide evidence of novel combinations of transgenic forms in the wild. Our results demonstrate that feral populations are large and widespread. Moreover, flowering times of escaped populations, as well as the fertile condition of the majority of collections suggest that these populations are established and persistent outside of cultivation

    Next Generation Mapping of Enological Traits in an F2 Interspecific Grapevine Hybrid Family

    Get PDF
    In winegrapes (Vitis spp.), fruit quality traits such as berry color, total soluble solids content (SS), malic acid content (MA), and yeast assimilable nitrogen (YAN) affect fermentation or wine quality, and are important traits in selecting new hybrid winegrape cultivars. Given the high genetic diversity and heterozygosity of Vitis species and their tendency to exhibit inbreeding depression, linkage map construction and quantitative trait locus (QTL) mapping has relied on F1 families with the use of simple sequence repeat (SSR) and other markers. This study presents the construction of a genetic map by single nucleotide polymorphisms identified through genotyping-by-sequencing (GBS) technology in an F2 mapping family of 424 progeny derived from a cross between the wild species V. riparia Michx. and the interspecific hybrid winegrape cultivar, ‘Seyval’. The resulting map has 1449 markers spanning 2424 cM in genetic length across 19 linkage groups, covering 95% of the genome with an average distance between markers of 1.67 cM. Compared to an SSR map previously developed for this F2 family, these results represent an improved map covering a greater portion of the genome with higher marker density. The accuracy of the map was validated using the well-studied trait berry color. QTL affecting YAN, MA and SS related traits were detected. A joint MA and SS QTL spans a region with candidate genes involved in the malate metabolism pathway. We present an analytical pipeline for calling intercross GBS markers and a high-density linkage map for a large F2 family of the highly heterozygous Vitis genus. This study serves as a model for further genetic investigations of the molecular basis of additional unique characters of North American hybrid wine cultivars and to enhance the breeding process by marker-assisted selection. The GBS protocols for identifying intercross markers developed in this study can be adapted for other heterozygous species

    Dormant Vines, Future Wines

    No full text
    Volume: 76Start Page: 10End Page: 1

    Grapevine Winter Survival and Prospects in an Age of Changing Climate

    Full text link
    Jason Londo, research geneticist with the USDA-ARS Grape Genetics Research Unit, discusses how grapevine genetics interact with climate variation, and what this means for bud dormancy and cold hardiness with climate change
    corecore