4 research outputs found
Design of selective TACE inhibitors using molecular docking studies: Synthesis and preliminary evaluation of anti-inflammatory and TACE inhibitory activity
<div><p>Tumor necrosis factor-α (TNF-α) converting enzyme (TACE) has been considered one of the principal therapeutic targets for the treatment of TNF-dependent pathologies. Several TACE inhibitors have been reported, but none of them has been successfully passed to phase II clinical trials. In the present work, we attempted to design highly selective new non-hydroxamate sulfonamide TACE inhibitors. The docking study was performed on one of the crystal structures of TACE, selected based on its resolution and R value, to tackle the flexibility issue of the active site. The results allowed us to distinguish the analogues with a higher binding affinity toward the active site of TACE and to identify the substituent of analogues needed for binding with the surrounding site of the enzyme. Finally the analogues were docked on crystal structures of six different matrix metalloproteinases (MMPs) for a selectivity study of TACE over MMPs. Some of these analogues were synthesized and subjected to preliminary testing for <i>in vivo</i> anti-inflammatory activity and TACE inhibitory activity.</p></div